1000 resultados para Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de categories
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
We construct spectral sequences in the framework of Baues-Wirsching cohomology and homology for functors between small categories and analyze particular cases including Grothendieck fibrations. We also give applications to more classical cohomology and homology theories including Hochschild-Mitchell cohomology and those studied before by Watts, Roos, Quillen and others
Resumo:
El novembre de 1859 Riemann envià un manuscrit de sis fulls a l’Acadèmia de Berlín titulat Sobre el nombre de primers menors que una quantitat donada, el qual seria l’única publicació dedicada a la teoria de nombres de tota la seva producció científica. Aquest treball, sens dubte una de les peces mestres de les matemàtiques de tots els temps, és pioner en l’aplicació de tècniques analítiques per a l’estudi de problemes aritmètics. En ell Riemann introdueix la funció Z i en dóna diverses propietats, de les quals en treu conseqüències sobre l’acumulació dels nombres primers. També hi enuncia la famosa conjectura sobre els seus zeros que ha passat a la història amb el nom d’hipòtesi de Riemann, i que, havent resistit els esforços de molts dels millors matemàtics del segle xx, és considerada avui dia el problema obert més important de les matemàtiques. L’objectiu d’aquestes notes és explicar el contingut del treball de Riemann i el paper fonamental que ha jugat en l’estudi de la distribució dels nombres primers.
Resumo:
Aquesta exposició vol presentar breument el ventall d'eines disponibles, la terminologia utilitzada i, en general, el marc metodològic de l'estadística exploratoria i de l'analisi de dades, el paradigma de la disciplina.En el decurs dels darrers anys, la disciplina no ha estat pas capgirada, però de tota manera sí que cal una actualització permanent.S'han forjat i provat algunes eines gairebé només esbossades, han aparegut nous dominis d'aplicació. Cal precisar la relació amb els competidors i dinamics veïns (intel·ligencia artificial, xarxes neurals, Data Mining). La perspectiva que presento dels mètodes d'anàlisi de dades emana evidentment d'un punt de vista particular; altres punts de vista poden ser igualment vàlids
Resumo:
"L’any 2005 fou declarat Any Mundial de la Física. Coincideix amb el centenari de publicacions d’Albert Einstein sobre el moviment brownià, sobre els quanta de llum i sobre relativitat especial. Les idees d’Einstein publicades fa un segle van canviar per sempre la manera d’entendre la física..."
Resumo:
La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.
Resumo:
Aquests instants memorables, que en general formen la part més noble de les monografies i revistes científiques, es produeixen sempre, és clar, al final de la 'línia de producció i sovint ens fan oblidar la primordial importància deis processos intermedis,en els quals les eines per a la generació d'idees i enunciats, i per al seu refinamentprogressiu, són ordinàriament molt més variades. De fet és una opinió força estesa,almenys entre els investigadors, que en aquests processos intermedis 'de gestació' éson realment rau el major atractiu de la recerca, on hi tenen una funció l'especulació,l'analogia, la simulació, la hipòtesi de treball, la conjectura o la predicció (6), tot i quemalauradament sovint no en resta cap reflex, especialment en el cas dels matemàtics,en les conclusions finals dels treballs (1).Els paràgrafs precedents no són res més que una presentació en miniatura deqüestions que resulten ser, per més clares que semblin a primera vista, delicadesi controvertides quan se'n fa un escrutini més reposat. No disposant de l'espai nidel temps que caldria per a una anàlisi detallada, el lector que desitgi aprofundir enaquesta direcció haurà de consultar obres adients sobre aquests temes (8). En tot cas,en la resta d'aquesta secció exposem a1guns exemples per il•lustrar alguns deis puntsmés destacats de les idees anteriors.
Resumo:
Lliçó inaugural del curs 1994/1995. Diplomatura d'estadística
Resumo:
L'objectiu que m'he proposat al preparar aquesta exposicióha estat el de mostrar. per una banda, com alguns delsproblemes bàsics de la teoria de Sistemes Dinàmics Linealstenen una resposta senzilla en termes de l' Álgebra lineal i,d'altra, com alguns problemes importants d'aquesta teorias'entronquen amb conceptes i tècniques bàsiques de la geometriai la topologia
Resumo:
En tot cas, jo voldria que aquesta conferència fos això que he dit: una breu lliçó sobre la importància de les equacions diferencials. Parlaré d'elles des de el punt de vista del models, és a dir, dels fenòmens que modelitzeu. I intentaré explicar que malgrat el seu origen antic, totes elles segueixen presentant avui en dia problemes nous i interessants, tant des de el punt de vista teòric com pràctic.
Resumo:
La ecuación del calor fue propuesta por Fourier en 1807-en su memoria sobre la propagación del calor en los cuerpos sólidos.En ella proponía además el germen de lo que pasaria a ser la Teoría de las Series de Fourier.Tan controvertida fue esta última, que tomó quince años, hasta 1822, para que la Academia de Ciencias decidiese publicarla.
Resumo:
Gauss va publicar l’any 1827 Disquisitiones generales circa superficies curvas, obra que ha resultat fonamental en el desenvolupament de la geometria diferencial a partir del segle XIX. La documentació de la qual es disposa sobre la gènesi i el desenvolupament de les idees d’aquesta obra, ens permet, a més de presentar els principals resultats que hi apareixen, fer una aproximació a la figura de Gauss, al seu estil matemàtic
Resumo:
Estas notas corresponden a las exposiciones presentadas en el \emph{Primer Seminario de Integrabilidad}, dentro de lo que se denomina \emph{Aula de Sistemas Din\'amicos}. Durante este evento se realizaron seis conferencias, todas presentadas por miembros del grupo de Sistemas Din\'amicos de la UPC. El programa desarrollado fue el siguiente:\\\begin{center}AULA DE SISTEMAS DIN\'AMICOS\end{center}\begin{center}\texttt{http://www.ma1.upc.es/recerca/seminaris/aulasd-cat.html}\end{center}\begin{center}SEMINARIO DE INTEGRABILIDAD\end{center}\begin{center}Martes 29 y Mi\'ercoles 30 de marzo de 2005\\Facultad de Matem\'aticas y Estad\'{\i}stica, UPC\\Aula: Seminario 1\end{center}\bigskip\begin{center}PROGRAMA Y RES\'UMENES\end{center}{\bf Martes 29 de marzo}\begin{itemize}\item15:30. Juan J. Morales-Ruiz. \emph{El problema de laintegrabilidad en Sistemas Din\'amicos}\medskip {\bf Resumen.} En esta presentaci\'on se pretende dar unaidea de conjunto, pero sin entrar en detalles, sobre las diversasnociones de integrabilidad, asociadas a nombres de matem\'aticostan ilustres como Liouville, Galois-Picard-Vessiot, Lie, Darboux,Kowalevskaya, Painlev\'e, Poincar\'e, Kolchin, Lax, etc. Adem\'astambi\'en mencionaremos la revoluci\'on que supuso en los a\~nossesenta del siglo pasado el descubrimiento de Gardner, Green,Kruskal y Miura sobre un nuevo m\'etodo para resolver en algunoscasos determinadas ecuaciones en derivadas parciales. \medskip\item16:00. David G\'omez-Ullate. \emph{Superintegrabilidad, pares deLax y modelos de $N-$cuerpos en el plano}\medskip{\bf Resumen.} Introduciremos algunas t\'ecnicas cl\'asicas paraconstruir modelos de N-cuerpos integrables, como los pares de Laxo la din\'amica de los ceros de un polinomio. Revisaremos lanoci\'on de integrabilidad Liouville y superintegrabilidad, ydiscutiremos un nuevo m\'etodo debido a F. Calogero para contruirmodelos de N-cuerpos en el plano con muchas \'orbitasperi\'odicas. La exposici\'on se acompa\~nar\'a de animaciones delmovimiento de los cuerpos, y se plantear\'an algunos problemasabiertos.\medskip\item17:00. Pausa\medskip\item17:30. Yuri Fedorov. \emph{An\'alisis de Kovalevskaya--Painlev\'ey Sistemas Algebraicamente Integrables}\medskip{\bf Resumen.} Muchos sistemas integrables poseen una propiedadremarcable: todas sus soluciones son funciones meromorfas deltiempo como una variable compleja. Tal comportamiento, que serefiere como propiedad de Kovalevskaya-Painleve (KP) y que se usafrecuentemente como una ensayo de integrabilidad, no es accidentaly tiene unas ra\'{\i}ces geom\'etricas profundas. En esta charladescribiremos una clase de tales sistemas (conocidos como lossistemas algebraicamente integrables) y subrayaremos suspropiedades geom\'etricas principales que permiten predecir laestructura de las soluciones complejas y adem\'as encontrarlasexpl\'{\i}citamente. Eso lo ilustraremos con algunos sistemas dela mec\'anica cl\'asica. Tambi\'en mencionaremos unasgeneralizaciones \'utiles de la noci\'on de integrabilidadalgebraica y de la propiedad KP.\end{itemize}\medskip{\bf Mi\'ercoles 30 de marzo}\begin{itemize}\item 15:30. Rafael Ram\'{\i}rez-Ros. \emph{El m\'etodo de Poincar\'e}\medskip{\bf Resumen.} Dado un sistema Hamiltoniano aut\'onomo cercano acompletamente integrable Poincar\'e prob\'o que, en general, noexiste ninguna integral primera adicional uniforme en elpar\'ametro de perturbaci\'on salvo el propio Hamiltoniano.Esbozaremos las ideas principales del m\'etodo de prueba ycomentaremos algunas extensiones y generalizaciones.\newpage\item16:30. Chara Pantazi. \emph{El M\'etodo de Darboux}\medskip{\bf Resumen.} Darboux, en 1878, present\'o su m\'etodo paraconstruir integrales primeras de campos vectoriales polinomialesutilizando sus curvas invariantes algebraicas. En estaexposici\'on presentaremos algunas extensiones del m\'etodocl\'asico de Darboux y tambi\'en algunas aplicaciones.\medskip\item17:30. Pausa\medskip\item18:00. Juan J. Morales-Ruiz. \emph{M\'etodos recientes paradetectar la no integrabilidad}\medskip{\bf Resumen.} En 1982 Ziglin utiliza la estructura de laecuaci\'on en variaciones de Poincar\'e (sobre una curva integralparticular) como una herramienta fundamental para detectar la nointegrabilidad de un sistema Hamiltoniano. En esta charla sepretende dar una idea de esta aproximaci\'on a la nointegrabilidad, junto con t\'ecnicas m\'as recientes queinvolucran la teor\'{\i}a de Galois de ecuaciones diferencialeslineales, haciendo \'enfasis en los ejemplos m\'as que en lateor\'{\i}a general. Ilustraremos estos m\'etodos con resultadossobre la no integrabilidad de algunos problemas de $N$ cuerpos enMec\'anica Celeste.\end{itemize}
Resumo:
Se describen algunas aplicaciones de la teoría de matrices a diversos temas pertenecientes alámbito de la matem\'atica discreta.