16 resultados para (K n) invariant mass distribution
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We make a thorough study of the process of three-body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambdad invariant mass distribution following K- absorption on 6Li. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.
Resumo:
Recently a number of mainstream papers have treated the rise of democracy in 19th century Europe and its instability in Latin America in an eminently Marxist fashion. This paper sets out their implications for Marxist thought. With respect to Europe, Marx's emphasis on political action backed by the threat of violence is vindicated but his justification for socialism is not. With respect to Latin America, the unequal distribution of wealth is the cause of political instability that is, in turn, the root cause of mass poverty. In addition it is possible to explain some of the paradoxical characteristics of neo-liberalism and to make a weak argument for socialism in spite of its rejection in Europe.
Resumo:
Variational steepest descent approximation schemes for the modified Patlak-Keller-Segel equation with a logarithmic interaction kernel in any dimension are considered. We prove the convergence of the suitably interpolated in time implicit Euler scheme, defined in terms of the Euclidean Wasserstein distance, associated to this equation for sub-critical masses. As a consequence, we recover the recent result about the global in time existence of weak-solutions to the modified Patlak-Keller-Segel equation for the logarithmic interaction kernel in any dimension in the sub-critical case. Moreover, we show how this method performs numerically in one dimension. In this particular case, this numerical scheme corresponds to a standard implicit Euler method for the pseudo-inverse of the cumulative distribution function. We demonstrate its capabilities to reproduce easily without the need of mesh-refinement the blow-up of solutions for super-critical masses.
Resumo:
We present a new a-priori estimate for discrete coagulation fragmentation systems with size-dependent diffusion within a bounded, regular domain confined by homogeneous Neumann boundary conditions. Following from a duality argument, this a-priori estimate provides a global L2 bound on the mass density and was previously used, for instance, in the context of reaction-diffusion equations. In this paper we demonstrate two lines of applications for such an estimate: On the one hand, it enables to simplify parts of the known existence theory and allows to show existence of solutions for generalised models involving collision-induced, quadratic fragmentation terms for which the previous existence theory seems difficult to apply. On the other hand and most prominently, it proves mass conservation (and thus the absence of gelation) for almost all the coagulation coefficients for which mass conservation is known to hold true in the space homogeneous case.
Resumo:
A novel test of spatial independence of the distribution of crystals or phases in rocksbased on compositional statistics is introduced. It improves and generalizes the commonjoins-count statistics known from map analysis in geographic information systems.Assigning phases independently to objects in RD is modelled by a single-trial multinomialrandom function Z(x), where the probabilities of phases add to one and areexplicitly modelled as compositions in the K-part simplex SK. Thus, apparent inconsistenciesof the tests based on the conventional joins{count statistics and their possiblycontradictory interpretations are avoided. In practical applications we assume that theprobabilities of phases do not depend on the location but are identical everywhere inthe domain of de nition. Thus, the model involves the sum of r independent identicalmultinomial distributed 1-trial random variables which is an r-trial multinomialdistributed random variable. The probabilities of the distribution of the r counts canbe considered as a composition in the Q-part simplex SQ. They span the so calledHardy-Weinberg manifold H that is proved to be a K-1-affine subspace of SQ. This isa generalisation of the well-known Hardy-Weinberg law of genetics. If the assignmentof phases accounts for some kind of spatial dependence, then the r-trial probabilitiesdo not remain on H. This suggests the use of the Aitchison distance between observedprobabilities to H to test dependence. Moreover, when there is a spatial uctuation ofthe multinomial probabilities, the observed r-trial probabilities move on H. This shiftcan be used as to check for these uctuations. A practical procedure and an algorithmto perform the test have been developed. Some cases applied to simulated and realdata are presented.Key words: Spatial distribution of crystals in rocks, spatial distribution of phases,joins-count statistics, multinomial distribution, Hardy-Weinberg law, Hardy-Weinbergmanifold, Aitchison geometry
Resumo:
Kv3.1 and Kv3.2 K+ channel proteins form similar voltage-gated K+ channels with unusual properties, including fast activation at voltages positive to −10 mV and very fast deactivation rates. These properties are thought to facilitate sustained high-frequency firing. Kv3.1 subunits are specifically found in fast-spiking, parvalbumin (PV)-containing cortical interneurons, and recent studies have provided support for a crucial role in the generation of the fast-spiking phenotype. Kv3.2 mRNAs are also found in a small subset of neocortical neurons, although the distribution of these neurons is different. We raised antibodies directed against Kv3.2 proteins and used dual-labeling methods to identify the neocortical neurons expressing Kv3.2 proteins and to determine their subcellular localization. Kv3.2 proteins are prominently expressed in patches in somatic and proximal dendritic membrane as well as in axons and presynaptic terminals of GABAergic interneurons. Kv3.2 subunits are found in all PV-containing neurons in deep cortical layers where they probably form heteromultimeric channels with Kv3.1 subunits. In contrast, in superficial layer PV-positive neurons Kv3.2 immunoreactivity is low, but Kv3.1 is still prominently expressed. Because Kv3.1 and Kv3.2 channels are differentially modulated by protein kinases, these results raise the possibility that the fast-spiking properties of superficial- and deep-layer PV neurons are differentially regulated by neuromodulators. Interestingly, Kv3.2 but not Kv3.1 proteins are also prominent in a subset of seemingly non-fast-spiking, somatostatin- and calbindin-containing interneurons, suggesting that the Kv3.1–Kv3.2 current type can have functions other than facilitating high-frequency firing.
Resumo:
The absolute K magnitudes and kinematic parameters of about 350 oxygen-rich Long-Period Variable stars are calibrated, by means of an up-to-date maximum-likelihood method, using HIPPARCOS parallaxes and proper motions together with radial velocities and, as additional data, periods and V-K colour indices. Four groups, differing by their kinematics and mean magnitudes, are found. For each of them, we also obtain the distributions of magnitude, period and de-reddened colour of the base population, as well as de-biased period-luminosity-colour relations and their two-dimensional projections. The SRa semiregulars do not seem to constitute a separate class of LPVs. The SRb appear to belong to two populations of different ages. In a PL diagram, they constitute two evolutionary sequences towards the Mira stage. The Miras of the disk appear to pulsate on a lower-order mode. The slopes of their de-biased PL and PC relations are found to be very different from the ones of the Oxygen Miras of the LMC. This suggests that a significant number of so-called Miras of the LMC are misclassified. This also suggests that the Miras of the LMC do not constitute a homogeneous group, but include a significant proportion of metal-deficient stars, suggesting a relatively smooth star formation history. As a consequence, one may not trivially transpose the LMC period-luminosity relation from one galaxy to the other.
Resumo:
Dirac's constraint Hamiltonian formalism is used to construct a gauge-invariant action for the massive spin-one and -two fields.
Resumo:
A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.
Resumo:
We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [K. Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of Lvy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
Background: Recent studies in pigs have detected copy number variants (CNVs) using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs) in swine species based on whole genome SNP genotyping chips. Results: We used predictions from three different programs (cnvPartition, PennCNV and GADA) to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP) according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. Conclusions: Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.
Resumo:
Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.
Resumo:
Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of these objects from radio up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.