129 resultados para dynamical systems theory
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
Breather stability and longevity in thermally relaxing nonlinear arrays depend sensitively on their interactions with other excitations. We review numerical results for the relaxation of breathers in Fermi¿Pasta¿Ulam arrays, with a specific focus on the different relaxation channels and their dependence on the interparticle interactions, dimensionality, initial condition, and system parameters
Resumo:
Considering teams as complex adaptive systems (CAS) this study deals with changes in team effectiveness over time in a specific context: professional basketball. The sample comprised 23 basketball teams whose outcomes were analysed over a 12-year period according to two objective measures. The results reveal that all the teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship was also found between teams showing low-dimensional chaotic dynamics and better outcomes, supporting the idea of healthy variability in organizational behaviour. The stability of the squad was likewise found to influence team outcomes, although it was not associated with the chaotic dynamics in team effectiveness. It is concluded that studying teams as CAS enables fluctuations in team effectiveness to be explained, and that the techniques derived from nonlinear dynamical systems, developed specifically for the study of CAS, are useful for this purpose.
Resumo:
Work-related flow is defined as a sudden and enjoyable merging of action and awareness that represents a peak experience in the daily lives of workers. Employees" perceptions of challenge and skill and their subjective experiences in terms of enjoyment, interest and absorption were measured using the experience sampling method, yielding a total of 6981 observations from a sample of 60 employees. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes. According to the R2, AICc and BIC indexes, the nonlinear dynamical systems model (i.e. cusp catastrophe model) fit the data better than the linear and logistic regression models. Likewise, the cusp catastrophe model appears to be especially powerful for modelling those cases of high levels of flow. Overall, flow represents a nonequilibrium condition that combines continuous and abrupt changes across time. Research and intervention efforts concerned with this process should focus on the variable of challenge, which, according to our study, appears to play a key role in the abrupt changes observed in work-related flow.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.
Resumo:
The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers
Resumo:
The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
Considering teams as complex adaptive systems (CAS) this study deals with changes in team effectiveness over time in a specific context: professional basketball. The sample comprised 23 basketball teams whose outcomes were analysed over a 12-year period according to two objective measures. The results reveal that all the teams showed chaotic dynamics, one of the key characteristics of CAS. A relationship was also found between teams showing low-dimensional chaotic dynamics and better outcomes, supporting the idea of healthy variability in organizational behaviour. The stability of the squad was likewise found to influence team outcomes, although it was not associated with the chaotic dynamics in team effectiveness. It is concluded that studying teams as CAS enables fluctuations in team effectiveness to be explained, and that the techniques derived from nonlinear dynamical systems, developed specifically for the study of CAS, are useful for this purpose.
Resumo:
Interior crises are understood as discontinuous changes of the size of a chaotic attractor that occur when an unstable periodic orbit collides with the chaotic attractor. We present here numerical evidence and theoretical reasoning which prove the existence of a chaos-chaos transition in which the change of the attractor size is sudden but continuous. This occurs in the Hindmarsh¿Rose model of a neuron, at the transition point between the bursting and spiking dynamics, which are two different dynamic behaviors that this system is able to present. Moreover, besides the change in attractor size, other significant properties of the system undergoing the transitions do change in a relevant qualitative way. The mechanism for such transition is understood in terms of a simple one-dimensional map whose dynamics undergoes a crossover between two different universal behaviors
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
One of the techniques used to detect faults in dynamic systems is analytical redundancy. An important difficulty in applying this technique to real systems is dealing with the uncertainties associated with the system itself and with the measurements. In this paper, this uncertainty is taken into account by the use of intervals for the parameters of the model and for the measurements. The method that is proposed in this paper checks the consistency between the system's behavior, obtained from the measurements, and the model's behavior; if they are inconsistent, then there is a fault. The problem of detecting faults is stated as a quantified real constraint satisfaction problem, which can be solved using the modal interval analysis (MIA). MIA is used because it provides powerful tools to extend the calculations over real functions to intervals. To improve the results of the detection of the faults, the simultaneous use of several sliding time windows is proposed. The result of implementing this method is semiqualitative tracking (SQualTrack), a fault-detection tool that is robust in the sense that it does not generate false alarms, i.e., if there are false alarms, they indicate either that the interval model does not represent the system adequately or that the interval measurements do not represent the true values of the variables adequately. SQualTrack is currently being used to detect faults in real processes. Some of these applications using real data have been developed within the European project advanced decision support system for chemical/petrochemical manufacturing processes and are also described in this paper