136 resultados para deposition temperature
Resumo:
The dielectric functions of InP, In0.53Ga0.47As, and In0.75Ga0.25As0.5P0.5 epitaxial layers have been measured using a polarization modulation spectroscopic ellipsometer in the 1.5 to 5.3 eV region. The oxide removal procedure has been carefully checked by comparing spectroscopic ellipsometry and x ray photoelectron spectroscopy measurements. These reference data have been used to investigate the structural nature of metalorganic chemical vapor deposition grown In0.53Ga0.47As/InP and In0.75Ga0.25As0.5P0.5/InP heterojunctions, currently used for photodiodes and laser diodes. The sharpness of the interfaces has been systematically compared for the two types of heterojunctions: In1 xGaxAsy/InP and InP/In1 xGaxAsyP1 y. The sharpest interface is obtained for InP growth on In0.75Ga0.25As0.5P0.5 where the interface region is estimated to be (10±10) Å thick. The importance of performing in situ SE measurements is emphasized.
Resumo:
ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark contrast to the linear optical properties of ZnO nanorods grown by these two methods, which show vastly different PL efficiencies. The third harmonic generated signal is analysed using intensity dependent measurements and interferometric frequency resolved optical gating, allowing extraction of the laser pulse parameters. The comparable levels of efficiency of ZnO grown by these very different methods as sources for third harmonic UV generation provides a broad suite of possible growth methods to suit various substrates, coverage and scalability requirements. Potential application areas range from interferometric frequency resolved optical gating characterization of few cycle fs pulses to single cell UV irradiation for biophysical studies.
Resumo:
We studied the reproductive cycle of the sea urchin Arbacia lixula in a subtidal population from northeast Spain over four years using a gonadosomatic index (GSI) and gonad histology. Our results show that the GSI of A. lixula follows a seasonal cycle which peaks in May-July and attains its lowest values in October-November every year. The time course of the GSI matched closely the photoperiod cycle. We also found a remarkable inter-annual variability in the maximum value of GSI, which correlated with mean water temperature during the gonad growth period (winter and spring). Gonad histology was also in agreement with a single gametogenic cycle per year in this species. We explored the application of circular statistics to present and analyse gonadal development data, which allowed us to adequately handle the high intra-individual variability detected, with several developmental stages commonly found within the same gonad. The picture that emerged is one of a gametogenic timing driven by photoperiod, while the amount of reproductive output is determined by temperature. This is coherent with the tropical origin of the species and lends support to recent warnings about an increase in the abundance of this species in the Mediterranean as a result of global warming, with associated increased impact potential in sublittoral communities.
APP processing and b-amyloid deposition in sporadic Creutzfeldt-Jakob patients is dependent on Dab1.
Resumo:
Alzheimer"s disease and prion pathologies (e.g., Creutzfeldt-Jakob disease (CJD)) display profound neural lesions associated with aberrant protein processing and extracellular amyloid deposits. Dab1 has been implicated in the regulation of Amyloid Precursor Protein (APP), but a direct link between human prion diseases and Dab1/APP interactions has not been published. Here we examined this putative relationship in seventeen cases of sporadic CJD (sCJD) post mortem. Biochemical analyses of brain tissue revealed two groups, which also correlated with PrPsc types 1 and 2. One group, with PrPsc type 1 showed increased Dab1 phosphorylation, and lower CTF production with an absence of A deposition. The second sCJD group, which carried PrPsc type 2, showed lower levels of Dab1 phosphorylation and CTF production, and A deposition. Thus, the present observations suggest a correlation between Dab1-phosphorylation, A deposition and PrPsc type in sCJD.
Resumo:
Two main coal-bearing sequences developed during the Oligocene in the Tertiary Ebro Basin, the Calaf (early Oligocene) and Mequinenza (late Oligocene) coal basins. Coal deposition took place in shallow marsh-swamp-lake complexes which sometimes became closed and evolved under warm climatic conditions with fluctuating humidity. These shallow lacustrine systems are closely interrelated with the terminal parts of the distributive fluvial systems which spread from the tectonically active Ebro basin margins. Laterally extensive lignite-bearing sequences, including rather thin, lenticular autochthonous and/or hypautochthonous coal seams with high ash and sulphur contents, characterized coal deposition in the shallow lacustrine systems. Coal seam geometry, which makes them nearly subeconomic, resulted from the tectonic instability during basin margin evolution and the sometimes closed, arid conditions under which the lacustrine systems evolved. High ash and sulphur contents resulted from the inadequate isolation of peat forming environments from clastic influx and from the very low acidity and sometimes high sulphate contents of the lacustrine waters. Coal exploration in shallow lacustrine sequences similar to those described here must take into account that the spread of coal-forming environments and maxima of coal deposition are usually coincident with lake expansions and retraction or shifting of the terminal fluvial zones interrelated with the lacustrine areas.
Resumo:
The possible use of polyethylene naphthalate as substrate for low-temperature deposited solar cells has been studied in this paper. The transparency of this polymer makes it a candidate to be used in both substrate and superstrate configurations. ZnO:Al has been deposited at room temperature on top of PEN. The resulting structure PEN/ZnO:Al presented good optical and electrical properties. PEN has been successfully textured (nanometer and micrometer random roughness) using hot-embossing lithography. Reflector structures have been built depositing Ag and ZnO:Al on top of the stamped polymer. The deposition of these layers did not affect the final roughness of the whole. The reflector structure has been morphologically and optically analysed to verify its suitability to be used in solar cells.
Resumo:
In this work, we study the electronic surface passivation of crystalline silicon with intrinsic thin silicon films deposited by Catalytic CVD. The contactless method used to determine the effective surface recombination velocity was the quasi-steady-state photoconductance technique. Hydrogenated amorphous and nanocrystalline silicon films were evaluated as passivating layers on n- and p-type float zone silicon wafers. The best results were obtained with amorphous silicon films, which allowed effective surface recombination velocities as low as 60 and 130 cms -1 on p- and n-type silicon, respectively. To our knowledge, these are the best results ever reported with intrinsic amorphous silicon films deposited by Catalytic CVD. The passivating properties of nanocrystalline silicon films strongly depended on the deposition conditions, especially on the filament temperature. Samples grown at lower filament temperatures (1600 °C) allowed effective surface recombination velocities of 450 and 600 cms -1 on n- and p-type silicon.
Resumo:
In this paper, the influence of the deposition conditions on the performance of p-i-n microcrystalline silicon solar cells completely deposited by hot-wire chemical vapor deposition is studied. With this aim, the role of the doping concentration, the substrate temperature of the p-type layer and of amorphous silicon buffer layers between the p/i and i/n microcrystalline layers is investigated. Best results are found when the p-type layer is deposited at a substrate temperature of 125 °C. The dependence seen of the cell performance on the thickness of the i layer evidenced that the efficiency of our devices is still limited by the recombination within this layer, which is probably due to the charge of donor centers most likely related to oxygen.
Resumo:
The very usual columnar growth of nanocrystalline silicon leads to electronic transport anisotropies. Whereas electrical measurements with coplanar electrodes only provide information about the electronic transport parallel to the substrate, it is the transverse transport which determines the collection efficiency in thin film solar cells. Hence, Schottky diodes on transparent electrodes were obtained by hot-wire CVD in order to perform external quantum efficiency and surface photovoltage studies in sandwich configuration. These measurements allowed to calculate a transverse collection length, which must correlate with the photovoltaic performance of thin film solar cells. Furthermore, the density of charge trapped at localized states in the bandgap was estimated from the voltage dependence of the depletion capacitance of these rectifying contacts.
Resumo:
Crops and forests are already responding to rising atmospheric carbon dioxide and air temperatures. Increasing atmospheric CO2 concentrations are expected to enhance plant photosynthesis. Nevertheless, after long-term exposure, plants acclimate and show a reduction in photosynthetic activity (i.e. down-regulation). If in the future the Earth"s temperature is allowed to rise further, plant ecosystems and food security will both face significant threats. The scientific community has recognized that an increase in global temperatures should remain below 2°C in order to combat climate change. All this evidence suggests that, in parallel with reductions in CO2 emissions, a more direct approach to mitigate global warming should be considered. We propose here that global warming could be partially mitigated directly through local bio-geoengineering approaches. For example, this could be done through the management of solar radiation at surface level, i.e. by increasing global albedo. Such an effect has been documented in the south-eastern part of Spain, where a significant surface air temperature trend of -0.3°C per decade has been observed due to a dramatic expansion of greenhouse horticulture.
Resumo:
Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.
Resumo:
Sparus aurata larvae reared under controlled water-temperature conditions during the first 24 days after hatching displayed a linear relationship between age (t) and standard length (SL): SL = 2.68 + 0.19 t (r2 = 0.91l). Increments were laid down in the sagittae with daily periodicity starting on day of hatching. Standard length (SL) and sagittae radius (OR) were correlated: SL(mm) = 2.65 + 0.012 OR(mm). The series of measurements of daily growth increment widths (DWI), food density and water temperature were analyzed by means of time series analysis. The DWI series were strongly autocorrelated, the growth on any one day was dependent upon growth on the previous day. Time series of water temperatures showed, as expected, a random pattern of variation, while food consumed daily was a function of food consumed the two previous days. The DWI series and the food density were correlated positively at lags 1 and 2. The results provided evidence of the importance of food intake upon the sagittae growth when temperature is optimal (20ºC). Sagittae growth was correlated with growth on the previous day, so this should be taken into account when fish growth is derived from sagittae growth rates.
Resumo:
Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.
Resumo:
N-type as well P-type top-gate microcrystalline silicon thin film transistors (TFTs) are fabricated on glass substrates at a maximum temperature of 200 °C. The active layer is an undoped μc-Si film, 200 nm thick, deposited by Hot-Wire Chemical Vapor. The drain and source regions are highly phosphorus (N-type TFTs) or boron (P-type TFTs)-doped μc-films deposited by HW-CVD. The gate insulator is a silicon dioxide film deposited by RF sputtering. Al-SiO 2-N type c-Si structures using this insulator present low flat-band voltage,-0.2 V, and low density of states at the interface D it=6.4×10 10 eV -1 cm -2. High field effect mobility, 25 cm 2/V s for electrons and 1.1 cm 2/V s for holes, is obtained. These values are very high, particularly the hole mobility that was never reached previously.