127 resultados para Sistema nerviós-Cirurgia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lesioned axons do not regenerate in the adult mammalian central nervous system, owing to the overexpression of inhibitory molecules such as myelin-derived proteins or chondroitin sulphate proteoglycans. In order to overcome axon inhibition, strategies based on extrinsic and intrinsic treatments have been developed. For myelin-associated inhibition, blockage with NEP1-40, receptor bodies or IN-1 antibodies has been used. In addition, endogenous blockage of cell signalling mechanisms induced by myelin-associated proteins is a potential tool for overcoming axon inhibitory signals. We examined the participation of glycogen synthase kinase 3 (GSK3) and ERK1/2 in axon regeneration failure in lesioned cortical neurons. We also investigated whether pharmacological blockage of GSK3 and ERK1/2 activities facilitates regeneration after myelin-directed inhibition in two models: i) cerebellar granule cells and ii) lesioned entorhino-hippocampal pathway in slice cultures, and whether the regenerative effects are mediated by Nogo Receptor 1 (NgR1). We demonstrate that, in contrast to ERK1/2 inhibition, the pharmacological treatment of GSK3 inhibition strongly facilitated regrowth of cerebellar granule neurons over myelin independently of NgR1. Lastly these regenerative effects were corroborated in the lesioned EHP in NgR1 -/- mutant mice. These results provide new findings for the development of new assays and strategies to enhance axon regeneration in injured cortical connections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mitochondrial trafficking deficits have been implicated in the pathogenesis of several neurological diseases, including Alzheimer's disease (AD). The Ser/Thre kinase GSK3β is believed to play a fundamental role in AD pathogenesis. Given that GSK3β substrates include Tau protein, here we studied the impact of GSK3β on mitochondrial trafficking and its dependence on Tau protein. Overexpression of GSK3β in neurons resulted in an increase in motile mitochondria, whereas a decrease in the activity of this kinase produced an increase in mitochondria pausing. These effects were dependent on Tau proteins, as Tau (−/−) neurons did not respond to distinct GSK3β levels. Furthermore, differences in GSK3β expression did not affect other parameters like mitochondria velocity or mitochondria run length. We conclude that GSK3B activity regulates mitochondrial axonal trafficking largely in a Tau-dependent manner.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Selective reinnervation of peripheral targets after nerve injury might be assessed by injecting a first tracer in a target before nerve injury to label the original neuronal population, and applying a second tracer after the regeneration period to label the regenerated population. However, altered uptake of tracer, fading, and cell death may interfere with the results. Furthermore, if the first tracer injected remains in the target tissue, available for 're-uptake' by misdirected regenerating axons, which originally innervated another region, then the identification of the original population would be confused. With the aim of studying this problem, the sciatic nerve of adult rats was sectioned and sutured. After 3 days, to allow the distal axon to degenerate avoiding immediate retrograde transport, one of the dyes: Fast Blue (FB), Fluoro-Gold (FG) or Diamidino Yellow (DY), was injected into the tibial branch of the sciatic nerve, or in the skin of one of the denervated digits. Rats survived 2-3 months. The results showed labelled dorsal root ganglion (DRG) cells and motoneurones, indicating that late re-uptake of a first tracer occurs. This phenomenon must be considered when the model of sequential labelling is used for studying the accuracy of peripheral reinnervation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Peripheral nerve injury is typically associated with long-term disturbances in sensory localization, despite nerve repair and regeneration. Here, we investigate the extent of correct reinnervation by back-labeling neuronal soma with fluorescent tracers applied in the target area before and after sciatic nerve injury and repair in the rat. The subpopulations of sensory or motor neurons that had regenerated their axons to either the tibial branch or the skin of the third hindlimb digit were calculated from the number of cell bodies labeled by the first and/or second tracer. Compared to the normal control side, 81% of the sensory and 66% of the motor tibial nerve cells regenerated their axons back to this nerve, while 22% of the afferent cells from the third digit reinnervated this digit. Corresponding percentages based on quantification of the surviving population on the experimental side showed 91%, 87%, and 56%, respectively. The results show that nerve injury followed by nerve repair by epineurial suture results in a high but variable amount of topographically correct regeneration, and that proportionally more neurons regenerate into the correct proximal nerve branch than into the correct innervation territory in the skin

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body percussion using to the BAPNE method is a means of cognitive stimulation with multiple applications. The aim of this research is to assess their full potential as a source of therapy. The methodology used is theoretical in nature and makes use of a wide bibliography to find evidence for its therapeutic effect. In essence, body percussion can be seen to lead to improvements in three areas. the Physical, as it stimulates awareness of the body, control of movement and muscular strength, coordination and balance; the Mental, as it improves concentration, memory and perception; and finally Socio-affective, as it helps to build egalitarian relationships and leads to a decrease in anxiety in social interactions. This means of therapy has several different uses and it is targeted at different groups. In the present investigation we categorise them into five main groups: individuals with neurodegenerative diseases like Alzheimer's or Parkinson's disease; individuals with learning disorders such as dyslexia or ADHD; patients affected by diseases of the spinal cord, cranial neuropathies and trauma (Neurorehabilitation); and for the treatment of addictive behavior (addiction); and depressive disorders or anxiety disorders.After thorough analysis, we have found scientific evidence that the therapeutic body percussion using the BAPNE method improves the quality of life of patients and it is an important factor in stabilizing the development of different diseases.In addition, evidence involving certain biological indicators (in control and experimental groups, and through a pre-test and post-test) show its effect on levels of stress and anxiety (reduction of cortisol), as well as improvement of social relations as a result of working as a group (increased levels of oxytocin), and improvements seen in self-esteem and in a variety of personal aspects through the Aspects of Identity questionnaire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Under pathological conditions, microglia, the resident CNS immune cells, become reactive and release pro-inflammatory cytokines and neurotoxic factors. We investigated whether this phenotypic switch includes changes in the expression of the L-type voltage-gated calcium channel (VGCC) in a rat model of N-methyl-d-aspartate-induced hippocampal neurodegeneration. Double immunohistochemistry and confocal microscopy evidenced that activated microglia express the L-type VGCC. We then analyzed whether BV2 microglia express functional L-type VGCC, and investigated the latter's role in microglial cytokine release and phagocytic capacity. Activated BV2 microglia express the CaV1.2 and CaV1.3 subunits of the L-type VGCC determined by reverse transcription-polymerase chain reaction, Western blot and immunocytochemistry. Depolarization with KCl induced a Ca2+ entry facilitated by Bay k8644 and partially blocked with nifedipine, which also reduced TNF-α and NO release by 40%. However, no nifedipine effect on BV2 microglia viability or phagocytic capacity was observed. Our results suggest that in CNS inflammatory processes, the L-type VGCC plays a specific role in the control of microglial secretory activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tots els animals tenen un sistema nerviós que els relaciona amb l'entorn, però el cervell humà no té parió. No només percebem l'entorn i som capaços de veure, per exemple, com surt el sol, sinó que a diferència de tota la resta d'ani- mals som capaços de percebre i gaudir de tota la bellesa d'aquesta explosió de llum i color. Tampoc no som els únics que vivim en societats organitzades, però la complexitat i la varietat de la nostra és infinitament superior. Ens comuni- quem amb els nostres congèneres, com d'una manera o una altra fan tots els mamífers, però el nostre llenguatge és capaç de crear també poesia. I colpegem pedres i pals, com la resta de primats, però les nostres mans, guiades pel cervell, també són capaces de crear obres d'art magnífiques. I raonem, som conscients de la nostra pròpia existència i hem fet florir les cultures més variades. El nostre comportament, i fins i tot la nostra forma de pensar i de percebre el món, vénen determinats per l'activitat del cervell i per anys d'evolució [...]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cocoa consumption began in America and in the mid sixteenth Century it quickly spread to Europe. Beyond being considered a pleasant habit due to its rich sweet lingering taste, chocolate was considered a good nutrient and even a medicine. Traditionally, health benefits of cocoa have been related with the high content of antioxidants of Theobroma cocoa beans. However, the direct psychoactive effect due to methylxanthines in cocoa is notable. Theobromine and caffeine, in the proportions found in cocoa, are responsible for the liking of the food/beverage. These compounds influence in a positive way our moods and our state of alertness. Theobromine, which is found in higher amounts than caffeine, seems to be behind several effects attributed to cocoa intake. The main mechanisms of action are inhibition of phosphodiesterases and blockade of adenosine receptors. Further mechanisms are being explored to better understand the health benefits associated to theobromine consumption. Unlike what happens in other mammals -pets- included, theobromine is safe for humans and has fewer unwanted effects than caffeine. Therefore, theobromine deserves attention as one of the most attractive molecules in cocoa.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Caveolae are membrane micro-domains enriched in cholesterol, sphingolipids and caveolins, which are transmembrane proteins with a hairpin-like structure. Caveolae participate in receptor-mediated trafficking of cell surface receptors and receptor-mediated signaling. Furthermore, caveolae participate in clathrin-independent endocytosis of membrane receptors. On the one hand, caveolins are involved in vascular and cardiac dysfunction. Also, neurological abnormalities in caveolin-1 knockout mice and a link between caveolin-1 gene haplotypes and neurodegenerative diseases have been reported. The aim of this article is to present the rationale for considering caveolae as potential targets in cardiovascular and neurological diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microenvironment of the central nervous system is important for neuronal function and development. During the early stages of embryo development the cephalic vesicles are filled by embryonic cerebrospinal fluid, a complex fluid containing different protein fractions, which contributes to the regulation of the survival, proliferation and neurogenesis of neuroectodermal stem cells. The protein content of embryonic cerebrospinal fluid from chick and rat embryos at the start of neurogenesis has already been determined. Most of the identified gene products are thought to be involved in the regulation of developmental processes during embryogenesis. However, due to the crucial roles played by embryonic cerebrospinal fluid during brain development, the embryological origin of the gene products it contains remains an intriguing question. According to the literature most of these products are synthesised in embryonic tissues other than the neuroepithelium. In this study we examined the embryological origin of the most abundant embryonic cerebrospinal fluid protein fractions by means of slot-blot analysis and by using several different embryonic and extraembryonic protein extracts, immunodetected with polyclonal antibodies. This first attempt to elucidate their origin is not based on the proteins identified by proteomic methods, but rather on crude protein fractions detected by SDS-PAGE analysis and to which polyclonal antibodies were specifically generated. Despite some of the limitations of this study, i.e. that one protein fraction may contain more than one gene product, and that a specific gene product may be contained in different protein fractions depending on post-translational modifications, our results show that most of the analysed protein fractions are not produced by the cephalic neuroectoderm but are rather stored in the egg reservoir; furthermore, few are produced by embryo tissues, thus indicating that they must be transported from their production or storage sites to the cephalic cavities, most probably via embryonic serum. These results raise the question as to whether the transfer of proteins from these two embryo compartments is regulated at this early developmental stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pleiotrophin (PTN) is a secreted growth factor, and also a cytokine, associated with the extracellular matrix, which has recently starting to attract attention as a significant neuromodulator with multiple neuronal functions during development. PTN is expressed in several tissues, where its signals are generally related with cell proliferation, growth, and differentiation by acting through different receptors. In Central Nervous System (CNS), PTN exerts post-developmental neurotrophic and -protective effects, and additionally has been involved in neurodegenerative diseases and neural disorders. Studies in Drosophila shed light on some aspects of the different levels of regulatory control of PTN invertebrate homologs. Specifically in hippocampus, recent evidence from PTN Knock-out (KO) mice involves PTN functioning in learning and memory. In this paper, we summarize, discuss, and contrast the most recent advances and results that lead to proposing a PTN as a neuromodulatory molecule in the CNS, particularly in hippocampus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.