136 resultados para Critical coupling parameter
Resumo:
[eng] Proceedings for the 1st Conference on Arts-Based and Artistic Research: Critical Reflections on the Intersection of Art and Research. University of Barcelona, January 31st - February 1st, 2013.
Resumo:
We present a machine learning approach to modeling bowing control parametercontours in violin performance. Using accurate sensing techniqueswe obtain relevant timbre-related bowing control parameters such as bowtransversal velocity, bow pressing force, and bow-bridge distance of eachperformed note. Each performed note is represented by a curve parametervector and a number of note classes are defined. The principal componentsof the data represented by the set of curve parameter vectors are obtainedfor each class. Once curve parameter vectors are expressed in the new spacedefined by the principal components, we train a model based on inductivelogic programming, able to predict curve parameter vectors used for renderingbowing controls. We evaluate the prediction results and show the potentialof the model by predicting bowing control parameter contours from anannotated input score.
Resumo:
Following a scheme of Levin we describe the values that functions in Fock spaces take on lattices of critical density in terms of both the size of the values and a cancelation condition that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.
Resumo:
We present a framework for modeling right-hand gestures in bowed-string instrument playing, applied to violin. Nearly non-intrusive sensing techniques allow for accurate acquisition of relevant timbre-related bowing gesture parameter cues. We model the temporal contour of bow transversal velocity, bow pressing force, and bow-bridge distance as sequences of short segments, in particular B´ezier cubic curve segments. Considering different articulations, dynamics, andcontexts, a number of note classes is defined. Gesture parameter contours of a performance database are analyzed at note-level by following a predefined grammar that dictatescharacteristics of curve segment sequences for each of the classes into consideration. Based on dynamic programming, gesture parameter contour analysis provides an optimal curve parameter vector for each note. The informationpresent in such parameter vector is enough for reconstructing original gesture parameter contours with significant fidelity. From the resulting representation vectors, weconstruct a statistical model based on Gaussian mixtures, suitable for both analysis and synthesis of bowing gesture parameter contours. We show the potential of the modelby synthesizing bowing gesture parameter contours from an annotated input score. Finally, we point out promising applicationsand developments.
Resumo:
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.
Resumo:
Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.
Resumo:
Background: Ethical conflicts are arising as a result of the growing complexity of clinical care, coupled with technological advances. Most studies that have developed instruments for measuring ethical conflict base their measures on the variables"frequency" and"degree of conflict". In our view, however, these variables are insufficient for explaining the root of ethical conflicts. Consequently, the present study formulates a conceptual model that also includes the variable"exposure to conflict", as well as considering six"types of ethical conflict". An instrument was then designed to measure the ethical conflicts experienced by nurses who work with critical care patients. The paper describes the development process and validation of this instrument, the Ethical Conflict in Nursing Questionnaire Critical Care Version (ECNQ-CCV). Methods: The sample comprised 205 nursing professionals from the critical care units of two hospitals in Barcelona (Spain). The ECNQ-CCV presents 19 nursing scenarios with the potential to produce ethical conflict in the critical care setting. Exposure to ethical conflict was assessed by means of the Index of Exposure to Ethical Conflict (IEEC), a specific index developed to provide a reference value for each respondent by combining the intensity and frequency of occurrence of each scenario featured in the ECNQ-CCV. Following content validity, construct validity was assessed by means of Exploratory Factor Analysis (EFA), while Cronbach"s alpha was used to evaluate the instrument"s reliability. All analyses were performed using the statistical software PASW v19. Results: Cronbach"s alpha for the ECNQ-CCV as a whole was 0.882, which is higher than the values reported for certain other related instruments. The EFA suggested a unidimensional structure, with one component accounting for 33.41% of the explained variance. Conclusions: The ECNQ-CCV is shown to a valid and reliable instrument for use in critical care units. Its structure is such that the four variables on which our model of ethical conflict is based may be studied separately or in combination. The critical care nurses in this sample present moderate levels of exposure to ethical conflict. This study represents the first evaluation of the ECNQ-CCV.
Resumo:
The main objective of this article is to assess the risk factors and the types of surface for the development of pressure ulcers (PU) on critical ill patients in an Intensive Care Unit (ICU)
Resumo:
A comment about the article “Local sensitivity analysis for compositional data with application to soil texture in hydrologic modelling” writen by L. Loosvelt and co-authors. The present comment is centered in three specific points. The first one is related to the fact that the authors avoid the use of ilr-coordinates. The second one refers to some generalization of sensitivity analysis when input parameters are compositional. The third tries to show that the role of the Dirichlet distribution in the sensitivity analysis is irrelevant
Resumo:
Nerve injuries often lead to neuropathic pain syndrome. The mechanisms contributing to this syndrome involve local inflammatory responses, activation of glia cells, and changes in the plasticity of neuronal nociceptive pathways. Cannabinoid CB(2) receptors contribute to the local containment of neuropathic pain by modulating glial activation in response to nerve injury. Thus, neuropathic pain spreads in mice lacking CB(2) receptors beyond the site of nerve injury. To further investigate the mechanisms leading to the enhanced manifestation of neuropathic pain, we have established expression profiles of spinal cord tissues from wild-type and CB(2)-deficient mice after nerve injury. An enhanced interferon-gamma (IFN-gamma) response was revealed in the absence of CB(2) signaling. Immunofluorescence stainings demonstrated an IFN-gamma production by astrocytes and neurons ispilateral to the nerve injury in wild-type animals. In contrast, CB(2)-deficient mice showed neuronal and astrocytic IFN-gamma immunoreactivity also in the contralateral region, thus matching the pattern of nociceptive hypersensitivity in these animals. Experiments in BV-2 microglia cells revealed that transcriptional changes induced by IFN-gamma in two key elements for neuropathic pain development, iNOS (inducible nitric oxide synthase) and CCR2, are modulated by CB(2) receptor signaling. The most direct support for a functional involvement of IFN-gamma as a mediator of CB(2) signaling was obtained with a double knock-out mouse strain deficient in CB(2) receptors and IFN-gamma. These animals no longer show the enhanced manifestations of neuropathic pain observed in CB(2) knock-outs. These data clearly demonstrate that the CB(2) receptor-mediated control of neuropathic pain is IFN-gamma dependent.
Resumo:
We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
Este estudio está basado en el muestreo de campo y posterior análisis de 24 parcelas de hayedo seleccionadas mediante una estratificación de su área de distribución basada en la clasificación CLATERES de la Ecorregión Catalano-Aragonesa. En cada parcela se han evaluado 3 parámetros fisiográficos, 15 climáticos y 18 edáficos, a partir de los cuales se han establecido sus valores paramétricos centrales y marginales que permiten definir los hábitats fisiográfico, climático y edáfico de las masas de Fagus sylvatica L. en Cataluña. Los hayedos catalanes se presentan sobre substratos litológicos muy diversos (plutonitas, vulcanitas, metamorfitas y sedimentitas, tanto ácidas como básicas), con texturas predominantes francas, franco-arenosas o franco-limosas. Los suelos, según FAO, son mayoritariamente cambisoles. A pesar de que la capacidad de retención de agua de sus suelos es escasa, la sequía fisiológica es reducida. Los humus predominantemente pertenecen a los tipos mull forestal y mull cálcico. Además, se presentan una serie de parámetros selvícolas ( Densidad de pies y densidad de chirpiales, Area basimétrica, Altura Total dominante, Índices de Hart-Becking, Índice de Calidad de Estación y Edad de la masa) que al correlacionarlos con los ecológicos nos ha permitido comprobar que los mejores hayedos se encuentran en las localizaciones más térmicas, en las que incluso se podría producir sequía fisiológica si no fuera por que existen suficientes precipitaciones estivales.
Resumo:
La necesidad de evaluar la evapotranspiración a escala regional para la gestión de regadíos ha hecho que sean innumerables los intentos por aplicar imágenes AVHRR-NOAA en la determinación el flujo de calor sensible. La principal limitación de estos métodos es la estimación de la resistencia aerodinámica. El parámetro crítico en la expresión de la resistencia aerodinámica es kB-1. La parametrización de kB-1 ha sido infructuosa a escala regional por no disponer hasta ahora de medidas de flujo de calor sensible a escala del píxel AVHRR en superficies heterogéneas y durante toda una temporada de riegos. Para resolver esta medida de flujo se ha desarrollado el cintilómetro. En la primera parte de este trabajo se estudia la representatividad espacial de las medidas del cintilómetro. El núcleo de esta aportación consiste en la correlación entre el parámetro kB-1, el NDVI y la altura solar. Los buenos resultados obtenidos (r2=0.81) ofrecen una nueva metodología para determinar el flujo de calor sensible. La estimación de kB-1, las imágenes AVHRR y los datos meteorológicos permiten calcular el flujo de calor sensible durante toda la temporada de riegos con errores inferiores al 20%.