100 resultados para fractional differential equations
Resumo:
This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.
Resumo:
En tot cas, jo voldria que aquesta conferència fos això que he dit: una breu lliçó sobre la importància de les equacions diferencials. Parlaré d'elles des de el punt de vista del models, és a dir, dels fenòmens que modelitzeu. I intentaré explicar que malgrat el seu origen antic, totes elles segueixen presentant avui en dia problemes nous i interessants, tant des de el punt de vista teòric com pràctic.
Resumo:
Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral waves are considered, and laws of motion for the centers are derived. The direction of the motion changes from along the line of centers to perpendicular to the line of centers as the separation increases, with the strength of the interaction algebraic at small separations and exponentially small at large separations. The corresponding asymptotic wave number and frequency are also determined, which evolve slowly as the spirals move
Resumo:
La investigación que aquí presentamos es una aproximación a las concepciones y creencias de los profesores universitarios de matemáticas acerca de la enseñanza de las ecuaciones diferenciales en estudios científico-experimentales. A parte de los intentos por caracterizar a cada profesor en términos de sus concepciones y creencias, y de establecer el nivel de coherencia y consistencia de éstas, a partir de los resultados del análisis se explica la persistencia de la utilización de métodos tradicionales de enseñanza. Las diferencias y similitudes entre las concepciones y creencias de cada profesor, y el nivel de coherencia demostrado nos han permitido establecer tres grupos de profesores, a los que hemos denominado I, II y III.
Resumo:
Intending to quest about the conceptions math teachers hold about how to teach Differential Equations to chemistry and biology students, we have devised a research tool which allows us to derive relevant information. We use different means to collect the adequate data related to the qualitative research, targeting the exploration of what teachers «say they do» and what athey do and would like to do». The use of concept maps and a questionnaire, along with a recorded interview, has revealed itself as an accurate means for the appropriate analysis of data, as shown in the case study we hereby include.
Resumo:
We prove that there are one-parameter families of planar differential equations for which the center problem has a trivial solution and on the other hand the cyclicity of the weak focus is arbitrarily high. We illustrate this phenomenon in several examples for which this cyclicity is computed.
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
Reinsurance is one of the tools that an insurer can use to mitigate the underwriting risk and then to control its solvency. In this paper, we focus on the proportional reinsurance arrangements and we examine several optimization and decision problems of the insurer with respect to the reinsurance strategy. To this end, we use as decision tools not only the probability of ruin but also the random variable deficit at ruin if ruin occurs. The discounted penalty function (Gerber & Shiu, 1998) is employed to calculate as particular cases the probability of ruin and the moments and the distribution function of the deficit at ruin if ruin occurs.
Resumo:
We study the lysis timing of a bacteriophage population by means of a continuously infection-age-structured population dynamics model. The features of the model are the infection process of bacteria, the death process, and the lysis process which means the replication of bacteriophage viruses inside bacteria and the destruction of them. The time till lysis (or latent period) is assumed to have an arbitrary distribution. We have carried out an optimization procedure, and we have found that the latent period corresponding to maximal fitness (i.e. maximal growth rate of the bacteriophage population) is of fixed length. We also study the dependence of the optimal latent period on the amount of susceptible bacteria and the number of virions released by a single infection. Finally, the evolutionarily stable strategy of the latent period is also determined as a fixed period taking into account that super-infections are not considered
Resumo:
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined