167 resultados para finite-dimensional quantum systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the spin dynamics of quasi-one-dimensional F=1 condensates both at zero and finite temperatures for arbitrary initial spin configurations. The rich dynamical evolution exhibited by these nonlinear systems is explained by surprisingly simple principles: minimization of energy at zero temperature and maximization of entropy at high temperature. Our analytical results for the homogeneous case are corroborated by numerical simulations for confined condensates in a wide variety of initial conditions. These predictions compare qualitatively well with recent experimental observations and can, therefore, serve as a guidance for ongoing experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topological order has proven a useful concept to describe quantum phase transitions which are not captured by the Ginzburg-Landau type of symmetry-breaking order. However, lacking a local order parameter, topological order is hard to detect. One way to detect it is via direct observation of anyonic properties of excitations which are usually discussed in the thermodynamic limit, but so far has not been realized in macroscopic quantum Hall samples. Here we consider a system of few interacting bosons subjected to the lowest Landau level by a gauge potential, and theoretically investigate vortex excitations in order to identify topological properties of different ground states. Our investigation demonstrates that even in surprisingly small systems anyonic properties are able to characterize the topological order. In addition, focusing on a system in the Laughlin state, we study the robustness of its anyonic behavior in the presence of tunable finite-range interactions acting as a perturbation. A clear signal of a transition to a different state is reflected by the system's anyonic properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is devoted to the study of a type of differential systems which appear usually in the study of some Hamiltonian systems with 2 degrees of freedom. We prove the existence of infinitely many periodic orbits on each negative energy level. All these periodic orbits pass near the total collision. Finally we apply these results to study the existence of periodic orbits in the charged collinear 3–body problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been recently found that a number of systems displaying crackling noise also show a remarkable behavior regarding the temporal occurrence of successive events versus their size: a scaling law for the probability distributions of waiting times as a function of a minimum size is fulfilled, signaling the existence on those systems of self-similarity in time-size. This property is also present in some non-crackling systems. Here, the uncommon character of the scaling law is illustrated with simple marked renewal processes, built by definition with no correlations. Whereas processes with a finite mean waiting time do not fulfill a scaling law in general and tend towards a Poisson process in the limit of very high sizes, processes without a finite mean tend to another class of distributions, characterized by double power-law waiting-time densities. This is somehow reminiscent of the generalized central limit theorem. A model with short-range correlations is not able to escape from the attraction of those limit distributions. A discussion on open problems in the modeling of these properties is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct a new family of semi-discrete numerical schemes for the approximation of the one-dimensional periodic Vlasov-Poisson system. The methods are based on the coupling of discontinuous Galerkin approximation to the Vlasov equation and several finite element (conforming, non-conforming and mixed) approximations for the Poisson problem. We show optimal error estimates for the all proposed methods in the case of smooth compactly supported initial data. The issue of energy conservation is also analyzed for some of the methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce and analyze two new semi-discrete numerical methods for the multi-dimensional Vlasov-Poisson system. The schemes are constructed by combing a discontinuous Galerkin approximation to the Vlasov equation together with a mixed finite element method for the Poisson problem. We show optimal error estimates in the case of smooth compactly supported initial data. We propose a scheme that preserves the total energy of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Es presenta una sèrie de conceptes de semblança molecular quàtica i uns procediments associats de càlcul i representació gràfica dels resultats. Donada una sèrie de molècules es poden obtenir diversos tipus de gràfics que mostren les relacions entre elles. Com a exemple d'aplicació d'aquest procés s'estudia una família de drogues antitumorals

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with n-dimensional (Diophantine) frequencies by adjusting the parameters. We do not assume that the system is close to integrable, but we use an a-posteriori format. Our unknowns are a parameterization of the solution and a parameter. We show that if there is a sufficiently approximate solution of the invariance equation, which also satisfies some explicit non–degeneracy conditions, then there is a true solution nearby. We present results both in Sobolev norms and in analytic norms. The a–posteriori format has several consequences: A) smooth dependence on the parameters, including the singular limit of zero dissipation; B) estimates on the measure of parameters covered by quasi–periodic solutions; C) convergence of perturbative expansions in analytic systems; D) bootstrap of regularity (i.e., that all tori which are smooth enough are analytic if the map is analytic); E) a numerically efficient criterion for the break–down of the quasi–periodic solutions. The proof is based on an iterative quadratically convergent method and on suitable estimates on the (analytical and Sobolev) norms of the approximate solution. The iterative step takes advantage of some geometric identities, which give a very useful coordinate system in the neighborhood of invariant (or approximately invariant) tori. This system of coordinates has several other uses: A) it shows that for dissipative conformally symplectic systems the quasi–periodic solutions are attractors, B) it leads to efficient algorithms, which have been implemented elsewhere. Details of the proof are given mainly for maps, but we also explain the slight modifications needed for flows and we devote the appendix to present explicit algorithms for flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system