97 resultados para Small Ground Vertebrates
Resumo:
We study the determining factors of cience-based cooperation in the case of small and micro firms. In this research, we propose an analytical framework based on the resource-based view of the firm and we identify a set of organisational characteristics, which we classify as internal, external and structural factors. Each factor can be linked to at least one reason, from the firm¿s point of view, to cooperate with universities and public research centres. Each reason can, in turn, be used as an indicator of a firm¿s organisational needs or organisational capacities. In order to validate the theoretical model, we estimate a logistic regression that models the propensity to participate in science-based cooperation activities within a sample of 285 small and micro firms located in Barcelona. The results show the key role played by the absorptive capacity of new and small companies.
Resumo:
Postprint (published version)
Resumo:
This paper is concerned with the organization of societies in north-eastern Iberia (present-day Catalonia) during the Iron Age, using data provided by domestic architecture and settlement organization. I offer an analysis of the social differences detected in the dwellings based on a sample of houses excavated at different types of settlement. Although many Iberian houses had simple layouts and small surface areas, some larger dwellings at the main sites are distinguished by the shape of their ground plans, their surface areas, architectural features, and central locations; these houses are believed to be the residences of the Iberian elite. Such dwellings are not found at all sites and the data suggest that there was a relationship between the category of the settlement (or its function) and the types of dwelling in it.
Resumo:
This project proposes a preliminary architectural design for a control and data processing center, also known as 'ground segment', for Earth observation satellites.
Resumo:
This paper describes a mesurement system designed to register the displacement of the legs using a two-dimensional laser range sensor with a scanning plane parallel to the ground and extract gait parameters. In the proposed methodology, the position of the legs is estimated by fitting two circles with the laser points that define their contour and the gait parameters are extracted applying a step-line model to the estimated displacement of the legs to reduce uncertainty in the determination of the stand and swing phase of the gait. Results obtained in a range up to 8 m shows that the systematic error in the location of one static leg is lower than 10 mm with and standard deviation lower than 8 mm; this deviation increases to 11 mm in the case of a moving leg. The proposed measurement system has been applied to estimate the gait parameters of six volunteers in a preliminary walking experiment.
Resumo:
The optimization of most pesticide and fertilizer applications is based on overall grove conditions. In this work we measurements. Recently, Wei [9, 10] used a terrestrial propose a measurement system based on a ground laser scanner to LIDAR to measure tree height, width and volume developing estimate the volume of the trees and then extrapolate their foliage a set of experiments to evaluate the repeatability and surface in real-time. Tests with pear trees demonstrated that the accuracy of the measurements, obtaining a coefficient of relation between the volume and the foliage can be interpreted as variation of 5.4% and a relative error of 4.4% in the linear with a coefficient of correlation (R) of 0.81 and the foliar estimation of the volume but without real-time capabilities. surface can be estimated with an average error less than 5 %.
Resumo:
We present experiments in which the laterally confined flow of a surfactant film driven by controlled surface tension gradients causes the subtended liquid layer to self-organize into an inner upstream microduct surrounded by the downstream flow. The anomalous interfacial flow profiles and the concomitant backflow are a result of the feedback between two-dimensional and three-dimensional microfluidics realized during flow in open microchannels. Bulk and surface particle image velocimetry data combined with an interfacial hydrodynamics model explain the dependence of the observed phenomena on channel geometry.