99 resultados para NANOCRYSTALLINE THIN-FILMS
Resumo:
The electrical properties of heavily In‐doped polycrystalline CdS films have been studied as a function of the doping level. The films were prepared by vacuum coevaporation of CdS and In. Conductivity and Hall measurements were performed over the temperature range 77-400 K. The conductivity decreases weakly with the temperature and shows a tendency towards saturation at low temperatures. A simple relationship σ=σ0(1+βT2) is found in the low‐temperature range. The temperature dependence of the mobility is similar to that of the conductivity since the Hall coefficient is found to be a constant in the whole temperature range. We interpret the experimental results in terms of a modified version of grain‐boundary trapping Seto"s model, taking into account thermionic emission and tunneling of carriers through the potential barriers. The barriers are found to be high and narrow, and tunneling becomes the predominating transport mechanism.
Resumo:
We have studied the abrupt and hysteretic changes of resistance in MgO-based capacitor devices. The switching behavior is discussed in terms of the formation and rupture of conduction filaments due to the migration of structural defects in the electric field, together with the redox events which affects the mobile carriers. The results presented in this paper suggest that MgO transparent films combining ferromagnetism and multilevel switching characteristics might pave the way for a new method for spintronic multibit data storage.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
We show both theoretical and experimental evidences of the appearance of ferromagnetism in MgO thin films. First-principles calculations allow predicting the possibility of the formation of a local moment in MgO, provided the existence of Mg vacancies which create holes on acceptor levels near the O 2p-dominated valence band. Magnetic measurements evidence of the existence of room-temperature ferromagnetism in MgO thin films. High-resolution transmission electron microscopy demonstrates the existence of cation vacancies in our samples. Finally, by applying the element specificity of the x-ray magnetic circular dichroism technique, we also demonstrate that the magnetic moments of the system arise from the spin polarization of the 2p electrons of oxygen atoms surrounding Mg vacancies.
Resumo:
Polysilicon thin film transistors (TFT) are of great interest in the field of large area microelectronics, especially because of their application as active elements in flat panel displays. Different deposition techniques are in tough competition with the objective to obtain device-quality polysilicon thin films at low temperature. In this paper we present the preliminary results obtained with the fabrication of TFT deposited by hot-wire chemical vapor deposition (HWCVD). Some results concerned with the structural characterization of the material and electrical performance of the device are presented.
Resumo:
Hydrogenated microcrystalline silicon films obtained at low temperature (150-280°C) by hot wire chemical vapour deposition at two different process pressures were measured by Raman spectroscopy, X-ray diffraction (XRD) spectroscopy and photothermal deflection spectroscopy (PDS). A crystalline fraction >90% with a subgap optical absortion 10 cm -1 at 0.8 eV were obtained in films deposited at growth rates >0.8 nm/s. These films were incorporated in n-channel thin film transistors and their electrical properties were measured. The saturation mobility was 0.72 ± 0.05 cm 2/ V s and the threshold voltage around 0.2 eV. The dependence of their conductance activation energies on gate voltages were related to the properties of the material.
Resumo:
Spectroscopic ellipsometry and high resolution transmission electron microscopy have been used to characterize microcrystalline silicon films. We obtain an excellent agreement between the multilayer model used in the analysis of the optical data and the microscopy measurements. Moreover, thanks to the high resolution achieved in the microscopy measurements and to the improved optical models, two new features of the layer-by-layer deposition of microcrystalline silicon have been detected: i) the microcrystalline films present large crystals extending from the a-Si:H substrate to the film surface, despite the sequential process in the layer-by-layer deposition; and ii) a porous layer exists between the amorphous silicon substrate and the microcrystalline silicon film.
Resumo:
The degradation of the filaments is usually studied by checking the silicidation or carbonization status of the refractory metal used as catalysts, and their effects on the structural stability of the filaments. In this paper, it will be shown that the catalytic stability of a filament heated at high temperature is much shorter than its structural lifetime. The electrical resistance of a thin tungsten filament and the deposition rate of the deposited thin film have been monitored during the filament aging. It has been found that the deposition rate drops drastically once the quantity of dissolved silicon in the tungsten reaches the solubility limit and the silicides start precipitating. This manuscript concludes that the catalytic stability is only guaranteed for a short time and that for sufficiently thick filaments it does not depend on the filament radius.
Resumo:
Electron scattering on a thin layer where the potential depends self-consistently on the wave function has been studied. When the amplitude of the incident wave exceeds a certain threshold, a soliton-shaped brightening (darkening) appears on the layer causing diffraction of the wave. Thus the spontaneously formed transverse pattern can be viewed as a self-induced nonlinear quantum screen. Attractive or repulsive nonlinearities result in different phase shifts of the wave function on the screen, which give rise to quite different diffraction patterns. Among others, the nonlinearity can cause self-focusing of the incident wave into a beam, splitting in two "beams," single or double traces with suppressed reflection or transmission, etc.