123 resultados para Introductory computer programming
Resumo:
Peer-reviewed
Resumo:
This paper presents SiMR, a simulator of the Rudimentary Machine designed to be used in a first course of computer architecture of Software Engineering and Computer Engineering programmes. The Rudimentary Machine contains all the basic elements in a RISC computer, and SiMR allows editing, assembling and executing programmes for this processor. SiMR is used at the Universitat Oberta de Catalunya as one of the most important resources in the Virtual Computing Architecture and Organisation Laboratory, since students work at home with the simulator and reports containing their work are automatically generated to be evaluated by lecturers. The results obtained from a survey show that most of the students consider SiMR as a highly necessary or even an indispensable resource to learn the basic concepts about computer architecture.
Resumo:
This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment was multi platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming languages and editor interfaces: graphic programming interface (basic level), XML-based meta language (intermediate level) or ANSI C language (advanced level). The environment supports programme translation transparently into different languages for learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The environment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware coupling. Functionality tests were performed to prove programming environment specifications. UV BOT mobile robots were used in these tests
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs.
Resumo:
El projecte consisteix en integrar les principals funcionalitats del Racó de l'estudiant als dispositius mòbils Android. Concretament, la consulta d'avisos de les assignatures, el correu, l'ocupació de les aules, l'horari personal i l'agenda. Addicionalment, les notícies de la FIB i la localització.
Resumo:
El projecte consisteix en integrar les principals funcionalitats del Racó de l'estudiant als dispositius mòbils Android. Concretament, la consulta d'avisos de les assignatures, el correu, l'ocupació de les aules, l'horari personal i l'agenda. Addicionalment, les notícies de la FIB i la localització.
Resumo:
In the last years there has been an increasing demand of a variety of logical systems, prompted mostly by applications of logic in AI, logic programming and other related areas. Labeled Deductive Systems (LDS) were developed as a flexible methodology to formalize such a kind of complex logical systems. In the last decade, defeasible argumentation has proven to be a confluence point for many approaches to formalizing commonsense reasoning. Different formalisms have been developed, many of them sharing common features. This paper presents a formalization of an LDS for defensible argumentation, in which the main issues concerning defeasible argumentation are captured within a unified logical framework. The proposed framework is defined in two stages. First, defeasible inference will be formalized by characterizing an argumentative LDS. That system will be then extended in order to capture conflict among arguments using a dialectical approach. We also present some logical properties emerging from the proposed framework, discussing also its semantical characterization.
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
VariScan is a software package for the analysis of DNA sequence polymorphisms at the whole genome scale. Among other features, the software:(1) can conduct many population genetic analyses; (2) incorporates a multiresolution wavelet transform-based method that allows capturing relevant information from DNA polymorphism data; and (3) it facilitates the visualization of the results in the most commonly used genome browsers.
Resumo:
Creació de dos prototips, un per Android i l'altre perUnity, establint les bases per a la producció d'un videojoc d'acció lateral (Beat 'em up)amb plataformes (puzles) anomenat "Ouroboros". Android és un sistema operatiu basat en Linux, designat primerament per mòbils tàctils(smartphones) i tabletes. En concret s'utilitzarà el SDK (Software Development Kit) dins del'entorn de programació Eclipse amb llenguatge Java, i les bases d'un frameworkanomenat LibGDX. Unity, en canvi, és un motor de videojocs multi-plataforma amb un entorn dedesenvolupament integrat, del que nosaltres utilitzarem la versió en Javascript.Es volen explorar les dues plataformes per tal d'esbrinar quina de les dues vies és la mésidònia de cares a la producció final d'un joc
Resumo:
Monte Carlo (MC) simulations have been used to study the structure of an intermediate thermal phase of poly(R-octadecyl ç,D-glutamate). This is a comblike poly(ç-peptide) able to adopt a biphasic structure that has been described as a layered arrangement of backbone helical rods immersed in a paraffinic pool of polymethylene side chains. Simulations were performed at two different temperatures (348 and 363 K), both of them above the melting point of the paraffinic phase, using the configurational bias MC algorithm. Results indicate that layers are constituted by a side-by-side packing of 17/5 helices. The organization of the interlayer paraffinic region is described in atomistic terms by examining the torsional angles and the end-to-end distances for the octadecyl side chains. Comparison with previously reported comblike poly(â-peptide)s revealed significant differences in the organization of the alkyl side chains.
Resumo:
We present computer simulations of a simple bead-spring model for polymer melts with intramolecular barriers. By systematically tuning the strength of the barriers, we investigate their role on the glass transition. Dynamic observables are analyzed within the framework of the mode coupling theory (MCT). Critical nonergodicity parameters, critical temperatures, and dynamic exponents are obtained from consistent fits of simulation data to MCT asymptotic laws. The so-obtained MCT λ-exponent increases from standard values for fully flexible chains to values close to the upper limit for stiff chains. In analogy with systems exhibiting higher-order MCT transitions, we suggest that the observed large λ-values arise form the interplay between two distinct mechanisms for dynamic arrest: general packing effects and polymer-specific intramolecular barriers. We compare simulation results with numerical solutions of the MCT equations for polymer systems, within the polymer reference interaction site model (PRISM) for static correlations. We verify that the approximations introduced by the PRISM are fulfilled by simulations, with the same quality for all the range of investigated barrier strength. The numerical solutions reproduce the qualitative trends of simulations for the dependence of the nonergodicity parameters and critical temperatures on the barrier strength. In particular, the increase in the barrier strength at fixed density increases the localization length and the critical temperature. However the qualitative agreement between theory and simulation breaks in the limit of stiff chains. We discuss the possible origin of this feature.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.