192 resultados para solve
Resumo:
Cobre Las Cruces is a renowned copper mining company located in Sevilla, with unexpected problems in wireless communications that have a direct affectation in production. Therefore, the main goals are to improve the WiFi infrastructure, to secure it and to detect and prevent from attacks and from the installation of rogue (and non-authorized) APs. All of that integrated with the current ICT infrastructure.This project has been divided into four phases, although only two of them have been included into the TFC; they are the analysis of the current situation and the design of a WLAN solution.Once the analysis part was finished, some weaknesses were detected. Subjects such as lack of connectivity and control, ignorance about installed WiFi devices and their localization and state and, by and large, the use of weak security mechanisms were some of the problems found. Additionally, due to the fact that the working area became larger and new WiFi infrastructures were added, the first phase took more time than expected.As a result of the detailed analysis, some goals were defined to solve and it was designed a centralized approach able to cope with them. A solution based on 802.11i and 802.1x protocols, digital certificates, a probe system running as IDS/IPS and ligthweight APs in conjunction with a Wireless LAN Controller are the main features.
Resumo:
The future of elections seems to be electronic voting systems du to its advantatges over the traditional voting. Nowadays, there are some different paradigms to ensure the security and reliability of e-voting. This document is part of a wider project which presents an e-Voting platform based on elliptic curve cryptography. It uses an hybrid combination of two of the main e-Voting paradigms to guarantee privacy and security in the counting phase, these are precisely, the mixnets and the homomorphic protocols. This document is focused in the description of the system and the maths and programming needed to solve the homomorphic part of it. In later chapters, there is a comparison between a simple mixing system and our system proposal.
Resumo:
In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
Business processes designers take into account the resources that the processes would need, but, due to the variable cost of certain parameters (like energy) or other circumstances, this scheduling must be done when business process enactment. In this report we formalize the energy aware resource cost, including time and usage dependent rates. We also present a constraint programming approach and an auction-based approach to solve the mentioned problem including a comparison of them and a comparison of the proposed algorithms for solving them
Resumo:
Delivery context-aware adaptative heterogenous systems. Currently, many types of devices that have gained access to the network is large and diverse. The different capabilities and characteristics of them, in addition to the different characteristics and preferences of users, have generated a new goal to overcome: how to adapt the contents taking into account this heterogeneity, known as the “delivery context.” The concepts of adaptation and accessibility have been widely discussed and have resulted in many proposals, standards and techniques designed to solve the problem, making it necessary to refine the analysis of the issue to be considered in the process of adaptation. We present a tour of the various proposals and standards that have marked the area of heterogeneous systems works, and others who have worked since the real-time interaction through agents based platforms. All targeted to solve a common goal: the delivery context
Resumo:
Background: Recent advances on high-throughput technologies have produced a vast amount of protein sequences, while the number of high-resolution structures has seen a limited increase. This has impelled the production of many strategies to built protein structures from its sequence, generating a considerable amount of alternative models. The selection of the closest model to the native conformation has thus become crucial for structure prediction. Several methods have been developed to score protein models by energies, knowledge-based potentials and combination of both.Results: Here, we present and demonstrate a theory to split the knowledge-based potentials in scoring terms biologically meaningful and to combine them in new scores to predict near-native structures. Our strategy allows circumventing the problem of defining the reference state. In this approach we give the proof for a simple and linear application that can be further improved by optimizing the combination of Zscores. Using the simplest composite score () we obtained predictions similar to state-of-the-art methods. Besides, our approach has the advantage of identifying the most relevant terms involved in the stability of the protein structure. Finally, we also use the composite Zscores to assess the conformation of models and to detect local errors.Conclusion: We have introduced a method to split knowledge-based potentials and to solve the problem of defining a reference state. The new scores have detected near-native structures as accurately as state-of-art methods and have been successful to identify wrongly modeled regions of many near-native conformations.
Resumo:
In a distributed key distribution scheme, a set of servers helps a set of users in a group to securely obtain a common key. Security means that an adversary who corrupts some servers and some users has no information about the key of a noncorrupted group. In this work, we formalize the security analysis of one such scheme which was not considered in the original proposal. We prove the scheme is secure in the random oracle model, assuming that the Decisional Diffie-Hellman (DDH) problem is hard to solve. We also detail a possible modification of that scheme and the one in which allows us to prove the security of the schemes without assuming that a specific hash function behaves as a random oracle. As usual, this improvement in the security of the schemes is at the cost of an efficiency loss.
Resumo:
We propose an edge detector based on the selection of wellcontrasted pieces of level lines, following the proposal ofDesolneux-Moisan-Morel (DMM) [1]. The DMM edge detectorhas the problem of over-representation, that is, everyedge is detected several times in slightly different positions.In this paper we propose two modifications of the originalDMM edge detector in order to solve this problem. The firstmodification is a post-processing of the output using a generalmethod to select the best representative of a bundle of curves.The second modification is the use of Canny’s edge detectorinstead of the norm of the gradient to build the statistics. Thetwo modifications are independent and can be applied separately.Elementary reasoning and some experiments showthat the best results are obtained when both modifications areapplied together.
Resumo:
For single-user MIMO communication with uncoded and coded QAM signals, we propose bit and power loading schemes that rely only on channel distribution information at the transmitter. To that end, we develop the relationship between the average bit error probability at the output of a ZF linear receiver and the bit rates and powers allocated at the transmitter. This relationship, and the fact that a ZF receiver decouples the MIMO parallel channels, allow leveraging bit loading algorithms already existing in the literature. We solve dual bit rate maximization and power minimization problems and present performance resultsthat illustrate the gains of the proposed scheme with respect toa non-optimized transmission.
Resumo:
This final year project presents the design principles and prototype implementation of BIMS (Biomedical Information Management System), a flexible software system which provides an infrastructure to manage all information required by biomedical research projects.The BIMS project was initiated with the motivation to solve several limitations in medical data acquisition of some research projects, in which Universitat Pompeu Fabra takes part. These limitations,based on the lack of control mechanisms to constraint information submitted by clinicians, impact on the data quality, decreasing it.BIMS can easily be adapted to manage information of a wide variety of clinical studies, not being limited to a given clinical specialty. The software can manage both, textual information, like clinical data (measurements, demographics, diagnostics, etc ...), as well as several kinds of medical images (magnetic resonance imaging, computed tomography, etc ...). Moreover, BIMS provides a web - based graphical user interface and is designed to be deployed in a distributed andmultiuser environment. It is built on top of open source software products and frameworks.Specifically, BIMS has been used to represent all clinical data being currently used within the CardioLab platform (an ongoing project managed by Universitat Pompeu Fabra), demonstratingthat it is a solid software system, which could fulfill requirements of a real production environment.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum Capture Problem. In the original MCP, market capture is obtained by lower traveling distances or lower traveling time, in this new version not only the traveling time but also the waiting time will affect the market share. This problem is hard to solve using standard optimization techniques. Metaheuristics are shown to offer accurate results within acceptable computing times.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.