77 resultados para Shopping-time
Resumo:
This paper proposes a new time-domain test of a process being I(d), 0 < d = 1, under the null, against the alternative of being I(0) with deterministic components subject to structural breaks at known or unknown dates, with the goal of disentangling the existing identification issue between long-memory and structural breaks. Denoting by AB(t) the different types of structural breaks in the deterministic components of a time series considered by Perron (1989), the test statistic proposed here is based on the t-ratio (or the infimum of a sequence of t-ratios) of the estimated coefficient on yt-1 in an OLS regression of ?dyt on a simple transformation of the above-mentioned deterministic components and yt-1, possibly augmented by a suitable number of lags of ?dyt to account for serial correlation in the error terms. The case where d = 1 coincides with the Perron (1989) or the Zivot and Andrews (1992) approaches if the break date is known or unknown, respectively. The statistic is labelled as the SB-FDF (Structural Break-Fractional Dickey- Fuller) test, since it is based on the same principles as the well-known Dickey-Fuller unit root test. Both its asymptotic behavior and finite sample properties are analyzed, and two empirical applications are provided.
Resumo:
This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips.