145 resultados para Interval discrete log problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consistencyof the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in theparameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank example, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method goes beyond the structural methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Often practical performance of analytical redundancy for fault detection and diagnosis is decreased by uncertainties prevailing not only in the system model, but also in the measurements. In this paper, the problem of fault detection is stated as a constraint satisfaction problem over continuous domains with a big number of variables and constraints. This problem can be solved using modal interval analysis and consistency techniques. Consistency techniques are then shown to be particularly efficient to check the consistency of the analytical redundancy relations (ARRs), dealing with uncertain measurements and parameters. Through the work presented in this paper, it can be observed that consistency techniques can be used to increase the performance of a robust fault detection tool, which is based on interval arithmetic. The proposed method is illustrated using a nonlinear dynamic model of a hydraulic system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speed of fault isolation is crucial for the design and reconfiguration of fault tolerant control (FTC). In this paper the fault isolation problem is stated as a constraint satisfaction problem (CSP) and solved using constraint propagation techniques. The proposed method is based on constraint satisfaction techniques and uncertainty space refining of interval parameters. In comparison with other approaches based on adaptive observers, the major advantage of the presented method is that the isolation speed is fast even taking into account uncertainty in parameters, measurements and model errors and without the monotonicity assumption. In order to illustrate the proposed approach, a case study of a nonlinear dynamic system is presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the surprising result that ab initio calculations on benzene and other planar arenes at correlated MP2, MP3, configuration interaction with singles and doubles (CISD), and coupled cluster with singles and doubles levels of theory using standard Pople’s basis sets yield nonplanar minima has been reported. The planar optimized structures turn out to be transition states presenting one or more large imaginary frequencies, whereas single-determinant-based methods lead to the expected planar minima and no imaginary frequencies. It has been suggested that such anomalous behavior can be originated by two-electron basis set incompleteness error. In this work, we show that the reported pitfalls can be interpreted in terms of intramolecular basis set superposition error (BSSE) effects, mostly between the C–H moieties constituting the arenes. We have carried out counterpoise-corrected optimizations and frequency calculations at the Hartree–Fock, B3LYP, MP2, and CISD levels of theory with several basis sets for a number of arenes. In all cases, correcting for intramolecular BSSE fixes the anomalous behavior of the correlated methods, whereas no significant differences are observed in the single-determinant case. Consequently, all systems studied are planar at all levels of theory. The effect of different intramolecular fragment definitions and the particular case of charged species, namely, cyclopentadienyl and indenyl anions, respectively, are also discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Previous studies have shown that immigrant workers face relatively worse working and employment conditions, as well as lower rates of sickness absence than native-born workers. This study aims to assess rates of sickness presenteeism in a sample of Spanish-born and foreign-born workers according to different characteristics. Methods: A cross-sectional survey was conducted amongst a convenience sample of workers (Spanish-born and foreign-born), living in four Spanish cities: Barcelona, Huelva, Madrid and Valencia (2008-2009). Sickness presenteeism information was collected through two items in the questionnaire ("Have you had health problems in the last year?" and "Have you ever had to miss work for any health problem?") and was defined as worker who had a health problem (answered yes, first item) and had not missed work (answered no, second item). For the analysis, the sample of 2,059 workers (1,617 foreign-born) who answered yes to health problems was included. After descriptives, logistic regressions were used to establish the association between origin country and sickness presenteeism (adjusted odds ratios aOR; 95% confidence interval 95%CI). Analyses were stratified per time spent in Spain among foreign-born workers. Results: All of the results refer to the comparison between foreign-born and Spanish-born workers as a whole, and in some categories relating to personal and occupational conditions. Foreign-born workers were more likely to report sickness presenteeism compared with their Spanish-born counterparts, especially those living in Spain for under 2 years [Prevalence: 42% in Spanish-born and 56.3% in Foreign-born; aOR 1.77 95%CI 1.24-2.53]. In case of foreign-born workers (with time in Spain < 2 years), men [aOR 2.31 95%CI 1.40-3.80], those with university studies [aOR 3.01 95%CI 1.04-8.69], temporary contracts [aOR 2.26 95%CI 1.29-3.98] and salaries between 751-1,200€ per month [aOR 1.74 95% CI 1.04-2.92] were more likely to report sickness presenteeism. Also, recent immigrants with good self-perceived health and good mental health were more likely to report presenteeism than Spanish-born workers with the same good health indicators. Conclusions: Immigrant workers report more sickness presenteeism than their Spanish-born counterparts. These results could be related to precarious work and employment conditions of immigrants. Immigrant workers should benefit from the same standards of social security, and of health and safety in the workplace that are enjoyed by Spanish workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mutual information of independent parallel Gaussian-noise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signalling constellations with limited peak-to-average ratios (m-PSK, m-QAM, etc) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum mean-square error proves key to solving the power allocation problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a managerial point of view, the more effcient, simple, and parameter-free (ESP) an algorithm is, the more likely it will be used in practice for solving real-life problems. Following this principle, an ESP algorithm for solving the Permutation Flowshop Sequencing Problem (PFSP) is proposed in this article. Using an Iterated Local Search (ILS) framework, the so-called ILS-ESP algorithm is able to compete in performance with other well-known ILS-based approaches, which are considered among the most effcient algorithms for the PFSP. However, while other similar approaches still employ several parameters that can affect their performance if not properly chosen, our algorithm does not require any particular fine-tuning process since it uses basic "common sense" rules for the local search, perturbation, and acceptance criterion stages of the ILS metaheuristic. Our approach defines a new operator for the ILS perturbation process, a new acceptance criterion based on extremely simple and transparent rules, and a biased randomization process of the initial solution to randomly generate different alternative initial solutions of similar quality -which is attained by applying a biased randomization to a classical PFSP heuristic. This diversification of the initial solution aims at avoiding poorly designed starting points and, thus, allows the methodology to take advantage of current trends in parallel and distributed computing. A set of extensive tests, based on literature benchmarks, has been carried out in order to validate our algorithm and compare it against other approaches. These tests show that our parameter-free algorithm is able to compete with state-of-the-art metaheuristics for the PFSP. Also, the experiments show that, when using parallel computing, it is possible to improve the top ILS-based metaheuristic by just incorporating to it our biased randomization process with a high-quality pseudo-random number generator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biplots are graphical displays of data matrices based on the decomposition of a matrix as the product of two matrices. Elements of these two matrices are used as coordinates for the rows and columns of the data matrix, with an interpretation of the joint presentation that relies on the properties of the scalar product. Because the decomposition is not unique, there are several alternative ways to scale the row and column points of the biplot, which can cause confusion amongst users, especially when software packages are not united in their approach to this issue. We propose a new scaling of the solution, called the standard biplot, which applies equally well to a wide variety of analyses such as correspondence analysis, principal component analysis, log-ratio analysis and the graphical results of a discriminant analysis/MANOVA, in fact to any method based on the singular-value decomposition. The standard biplot also handles data matrices with widely different levels of inherent variance. Two concepts taken from correspondence analysis are important to this idea: the weighting of row and column points, and the contributions made by the points to the solution. In the standard biplot one set of points, usually the rows of the data matrix, optimally represent the positions of the cases or sample units, which are weighted and usually standardized in some way unless the matrix contains values that are comparable in their raw form. The other set of points, usually the columns, is represented in accordance with their contributions to the low-dimensional solution. As for any biplot, the projections of the row points onto vectors defined by the column points approximate the centred and (optionally) standardized data. The method is illustrated with several examples to demonstrate how the standard biplot copes in different situations to give a joint map which needs only one common scale on the principal axes, thus avoiding the problem of enlarging or contracting the scale of one set of points to make the biplot readable. The proposal also solves the problem in correspondence analysis of low-frequency categories that are located on the periphery of the map, giving the false impression that they are important.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We start with a generalization of the well-known three-door problem:the n-door problem. The solution of this new problem leads us toa beautiful representation system for real numbers in (0,1] as alternated series, known in the literature as Pierce expansions. A closer look to Pierce expansions will take us to some metrical properties of sets defined through the Pierce expansions of its elements. Finally, these metrical properties will enable us to present 'strange' sets, similar to the classical Cantor set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoring rules that elicit an entire belief distribution through the elicitation of point beliefsare time-consuming and demand considerable cognitive e¤ort. Moreover, the results are validonly when agents are risk-neutral or when one uses probabilistic rules. We investigate a classof rules in which the agent has to choose an interval and is rewarded (deterministically) onthe basis of the chosen interval and the realization of the random variable. We formulatean e¢ ciency criterion for such rules and present a speci.c interval scoring rule. For single-peaked beliefs, our rule gives information about both the location and the dispersion of thebelief distribution. These results hold for all concave utility functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.