92 resultados para Extreme Quantile
Resumo:
How do organizations cope with extreme uncertainty? The existing literatureis divided on this issue: some argue that organizations deal best withuncertainty in the environment by reproducing it in the organization, whereasothers contend that the orga nization should be protected from theenvironment. In this paper we study the case of a Wall Street investment bankthat lost its entire office and trading technology in the terrorist attack ofSeptember 11 th. The traders survived, but were forced to relocate to amakeshift trading room in New Jersey. During the six months the traders spentoutside New York City, they had to deal with fears and insecurities insidethe company as well as outside it: anxiety about additional attacks,questions of professional identity, doubts about the future of the firm, andambiguities about the future re-location of the trading room. The firmovercame these uncertainties by protecting the traders identities and theirability to engage in sensemaking. The organization held together through aleadership style that managed ambiguities and created the conditions for newsolutions to emerge.
Resumo:
The central message of this paper is that nobody should be using the samplecovariance matrix for the purpose of portfolio optimization. It containsestimation error of the kind most likely to perturb a mean-varianceoptimizer. In its place, we suggest using the matrix obtained from thesample covariance matrix through a transformation called shrinkage. Thistends to pull the most extreme coefficients towards more central values,thereby systematically reducing estimation error where it matters most.Statistically, the challenge is to know the optimal shrinkage intensity,and we give the formula for that. Without changing any other step in theportfolio optimization process, we show on actual stock market data thatshrinkage reduces tracking error relative to a benchmark index, andsubstantially increases the realized information ratio of the activeportfolio manager.
Resumo:
We analyze a mutual fire insurance mechanism usedin Andorra, which is called La Crema in the locallanguage. This mechanism relies on households'announced property values to determine how much ahousehold is reimbursed in the case of a fire andhow payments are apportioned among other households.The only Pareto eficient allocation reachablethrough the mechanism requires that all householdshonestly report the true value of their property.However, such honest reporting is not an equilibriumexcept in the extreme case where the property valuesare identical for all households. Nevertheless, as the size of the society becomes large, thebenefits from deviating from truthful reportingvanish, and all of the non-degenerate equilibriaof the mechanism are nearly truthful andapproximately Pareto efficient.
Resumo:
We present a non-equilibrium theory in a system with heat and radiative fluxes. The obtained expression for the entropy production is applied to a simple one-dimensional climate model based on the first law of thermodynamics. In the model, the dissipative fluxes are assumed to be independent variables, following the criteria of the Extended Irreversible Thermodynamics (BIT) that enlarges, in reference to the classical expression, the applicability of a macroscopic thermodynamic theory for systems far from equilibrium. We analyze the second differential of the classical and the generalized entropy as a criteria of stability of the steady states. Finally, the extreme state is obtained using variational techniques and observing that the system is close to the maximum dissipation rate
Resumo:
As adult height is a well-established retrospective measure of health and standard of living, it is important to understand the factors that determine it. Among them, the influence of socio-environmental factors has been subjected to empirical scrutiny. This paper explores the influence of generational (or environmental) effects and individual and gender-specific heterogeneity on adult height. Our data set is from contemporary Spain, a country governed by an authoritarian regime between 1939 and 1977. First, we use normal position and quantile regression analysis to identify the determinants of self-reported adult height and to measure the influence of individual heterogeneity. Second, we use a Blinder-Oaxaca decomposition approach to explain the `gender height gap¿ and its distribution, so as to measure the influence on this gap of individual heterogeneity. Our findings suggest a significant increase in adult height in the generations that benefited from the country¿s economic liberalization in the 1950s, and especially those brought up after the transition to democracy in the 1970s. In contrast, distributional effects on height suggest that only in recent generations has ¿height increased more among the tallest¿. Although the mean gender height gap is 11 cm, generational effects and other controls such as individual capabilities explain on average roughly 5% of this difference, a figure that rises to 10% in the lowest 10% quantile.
Resumo:
This paper investigates the contribution of public investment to the reduction of regional inqualities, with a specific application to Mexico. We use quantile regressions to examine the impact of public investment on regional disparities according to the position of each region in the conditional distribution of regional income. Results confirm the hypothesis that regional inequalities can indeed be atrributed to the regional distribution of public investment, where the observed pattern shows that public investment mainly helped to reduce regional inequalities between the richest regions
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.
Resumo:
A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the functional network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (bursting or non-bursting). Thus by conditioning with respect to the global mean activity, we improve the performance of our method. This allows us to focus the analysis to specific dynamical regimes of the network in which the inferred functional connectivity is shaped by monosynaptic excitatory connections, rather than by collective synchrony. Our method can discriminate between actual causal influences between neurons and spurious non-causal correlations due to light scattering artifacts, which inherently affect the quality of fluorescence imaging. Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good estimation of the excitatory network clustering coefficient, allowing for discrimination between weakly and strongly clustered topologies. Finally, we demonstrate the applicability of our method to analyses of real recordings of in vitro disinhibited cortical cultures where we suggest that excitatory connections are characterized by an elevated level of clustering compared to a random graph (although not extreme) and can be markedly non-local.
Resumo:
Recent results in the literature concerning holography indicate that the thermodynamics of quantum gravity (at least with a negative cosmological constant) can be modeled by the large N thermodynamics of quantum field theory. We emphasize that this suggests a completely unitary evolution of processes in quantum gravity, including black hole formation and decay, and even more extreme examples involving topology change. As concrete examples which show that this correspondence holds even when the space-time is only locally asymptotically AdS, we compute the thermodynamical phase structure of the AdS-Taub-NUT and AdS-Taub-bolt spacetimes, and compare them to a (2+1)-dimensional conformal field theory (at large N) compactified on a squashed three-sphere and on the twisted plane.
Resumo:
We analyze the emergence of synchronization in a population of moving integrate-and-fire oscillators. Oscillators, while moving on a plane, interact with their nearest neighbor upon firing time. We discover a nonmonotonic dependence of the synchronization time on the velocity of the agents. Moreover, we find that mechanisms that drive synchronization are different for different dynamical regimes. We report the extreme situation where an interplay between the time scales involved in the dynamical processes completely inhibits the achievement of a coherent state. We also provide estimators for the transitions between the different regimes.
Resumo:
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
Resumo:
Using the experimental data of Paret and Tabeling [Phys. Rev. Lett. 79, 4162 (1997)] we consider in detail the dispersion of particle pairs by a two-dimensional turbulent flow and its relation to the kinematic properties of the velocity field. We show that the mean square separation of a pair of particles is governed by rather rare, extreme events and that the majority of initially close pairs are not dispersed by the flow. Another manifestation of the same effect is the fact that the dispersion of an initially dense cluster is not the result of homogeneously spreading the particles within the whole system. Instead it proceeds through a splitting into smaller but also dense clusters. The statistical nature of this effect is discussed.
Resumo:
This paper investigates the contribution of public investment to the reduction of regional inqualities, with a specific application to Mexico. We use quantile regressions to examine the impact of public investment on regional disparities according to the position of each region in the conditional distribution of regional income. Results confirm the hypothesis that regional inequalities can indeed be atrributed to the regional distribution of public investment, where the observed pattern shows that public investment mainly helped to reduce regional inequalities between the richest regions
Resumo:
As adult height is a well-established retrospective measure of health and standard of living, it is important to understand the factors that determine it. Among them, the influence of socio-environmental factors has been subjected to empirical scrutiny. This paper explores the influence of generational (or environmental) effects and individual and gender-specific heterogeneity on adult height. Our data set is from contemporary Spain, a country governed by an authoritarian regime between 1939 and 1977. First, we use normal position and quantile regression analysis to identify the determinants of self-reported adult height and to measure the influence of individual heterogeneity. Second, we use a Blinder-Oaxaca decomposition approach to explain the `gender height gap¿ and its distribution, so as to measure the influence on this gap of individual heterogeneity. Our findings suggest a significant increase in adult height in the generations that benefited from the country¿s economic liberalization in the 1950s, and especially those brought up after the transition to democracy in the 1970s. In contrast, distributional effects on height suggest that only in recent generations has ¿height increased more among the tallest¿. Although the mean gender height gap is 11 cm, generational effects and other controls such as individual capabilities explain on average roughly 5% of this difference, a figure that rises to 10% in the lowest 10% quantile.
Resumo:
Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem.