95 resultados para Cryptography, Discrete Logarithm, Extension Fields, Karatsuba Multiplication, Normal Basis
Resumo:
We study the scattering of a moving discrete breather (DB) on a junction in a Fermi-Pasta-Ulam chain consisting of two segments with different masses of the particles. We consider four distinct cases: (i) a light-heavy (abrupt) junction in which the DB impinges on the junction from the segment with lighter mass, (ii) a heavy-light junction, (iii) an up mass ramp in which the mass in the heavier segment increases continuously as one moves away from the junction point, and (iv) a down mass ramp. Depending on the mass difference and DB characteristics (frequency and velocity), the DB can either reflect from, or transmit through, or get trapped at the junction or on the ramp. For the heavy-light junction, the DB can even split at the junction into a reflected and a transmitted DB. The latter is found to subsequently split into two or more DBs. For the down mass ramp the DB gets accelerated in several stages, with accompanying radiation (phonons). These results are rationalized by calculating the Peierls-Nabarro barrier for the various cases. We also point out implications of our results in realistic situations such as electron-phonon coupled chains.
Resumo:
We investigate numerically the scattering of a moving discrete breather on a pair of junctions in a Fermi-Pasta-Ulam chain. These junctions delimit an extended region with different masses of the particles. We consider (i) a rectangular trap, (ii) a wedge shaped trap, and (iii) a smoothly varying convex or concave mass profile. All three cases lead to DB confinement, with the ease of trapping depending on the profile of the trap. We also study the collision and trapping of two DBs within the profile as a function of trap width, shape, and approach time at the two junctions. The latter controls whether one or both DBs are trapped.
Resumo:
We make a numerical study of the effect that spatial perturbations have in normal Saffman-Taylor fingers driven at constant pressure gradients. We use a phase field model that allows for spatial variations in the Hele-Shaw cell. We find that, regardless of the specific way in which spatial perturbations are introduced, a lateral instability develops on the sides of the propagating Saffman-Taylor finger. Moreover, the instability exists regardless of the intensity of spatial perturbations in the cell as long as the perturbations are felt by the finger tip. If, as the finger propagates, the spatial perturbations felt by the tip change, the instability is nonperiodic. If, as the finger propagates, the spatial perturbations felt by the tip are persistent, the instability developed is periodic. In the later case, the instability is symmetrical or asymmetrical depending on the intensity of the perturbation.
Resumo:
The issue of de Sitter invariance for a massless minimally coupled scalar field is examined. Formally, it is possible to construct a de Sitterinvariant state for this case provided that the zero mode of the field is quantized properly. Here we take the point of view that this state is physically acceptable, in the sense that physical observables can be computed and have a reasonable interpretation. In particular, we use this vacuum to derive a new result: that the squared difference between the field at two points along a geodesic observers spacetime path grows linearly with the observers proper time for a quantum state that does not break de Sitter invariance. Also, we use the Hadamard formalism to compute the renormalized expectation value of the energy-momentum tensor, both in the O(4)-invariant states introduced by Allen and Follaci, and in the de Sitterinvariant vacuum. We find that the vacuum energy density in the O(4)-invariant case is larger than in the de Sitterinvariant case.
Resumo:
We study the Brownian motion in velocity-dependent fields of force. Our main result is a Smoluchowski equation valid for moderate to high damping constants. We derive that equation by perturbative solution of the Langevin equation and using functional derivative techniques.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
In this article we present a detailed analysis of the kinetics of a class of sequential adsorption models that take into account the effect of externally applied fields (as an electric field, or a shear rate) on the adsorption. The excluded volume interactions related to the finite size of the adsorbing particles are modified by the external fields. As a result, new adsorption mechanisms appear with respect to the ones used to describe the kinetics in a quiescent fluid. In particular, if the adsorbing particles are allowed to roll over preadsorbed ones, adsorption becomes non local even in the simplest geometry. An exact analytic theory cannot be developed, but we introduce a self-consistent theory that turns out to agree with the simulation results over all the range of the parameters.
Resumo:
We present an exact solution for the order parameters that characterize the stationary behavior of a population of Kuramotos phase oscillators under random external fields [Y. Kuramoto, in International Symposium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics, Vol. 39 (Springer, Berlin, 1975), p. 420]. From these results it is possible to generate the phase diagram of models with an arbitrary distribution of random frequencies and random fields.
Resumo:
A model of anisotropic fluid with three perfect fluid components in interaction is studied. Each fluid component obeys the stiff matter equation of state and is irrotational. The interaction is chosen to reproduce an integrable system of equations similar to the one associated to self-dual SU(2) gauge fields. An extension of the BelinskyZakharov version of the inverse scattering transform is presented and used to find soliton solutions to the coupled Einstein equations. A particular class of solutions that can be interpreted as lumps of matter propagating in empty space-time is examined.
Resumo:
The Meissner and diamagnetic shielding effects and the upper, lower, and thermodynamical critical fields have been studied in a Ba2HoCu3O7-x sample using magnetization measurements in fields up to 55 kOe. The diamagnetic shielding curve shows the existence of a transition at Tc=91.5 K followed by a broad transition extending from 85 to 25 K which may be related to inhomogeneities in the oxygen content of the sample. A rather low flux expulsion (13.5%) is observed which we attribute to flux pinning or trapping. We show that the coexistence of superconducting and nonsuperconducting regions within the sample at temperatures just below Tc leads to strong reductions in the critical magnetic fields.