90 resultados para ACID DOPED POLYBENZIMIDAZOLE
Resumo:
Selection of amino acid substitutions associated with resistance to nucleos(t)ide-analog (NA) therapy in the hepatitis B virus (HBV) reverse transcriptase (RT) and their combination in a single viral genome complicates treatment of chronic HBV infection and may affect the overlapping surface coding region. In this study, the variability of an overlapping polymerase-surface region, critical for NA resistance, is investigated before treatment and under antiviral therapy, with assessment of NA-resistant amino acid changes simultaneously occurring in the same genome (linkage analysis) and their influence on the surface coding region.
Resumo:
In this paper, the influence of the deposition conditions on the performance of p-i-n microcrystalline silicon solar cells completely deposited by hot-wire chemical vapor deposition is studied. With this aim, the role of the doping concentration, the substrate temperature of the p-type layer and of amorphous silicon buffer layers between the p/i and i/n microcrystalline layers is investigated. Best results are found when the p-type layer is deposited at a substrate temperature of 125 °C. The dependence seen of the cell performance on the thickness of the i layer evidenced that the efficiency of our devices is still limited by the recombination within this layer, which is probably due to the charge of donor centers most likely related to oxygen.
Resumo:
Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE.
Resumo:
The effects of the addition of heated oils to feeds (3%, w/w) and the dietary supplementation with a-tocopheryl acetate (TA; 100 mg/kg) and Zn (200 mg/kg) on rabbit tissue fatty acid (FA) composition and on the Zn, Cu, Fe and Se content in meat were assessed. Heating unrefined sunflower oil (SO) at 558C for 245 h increased its content in primary oxidation products and reduced its a-tocopherol content. However, this did not significantly affect tissue FA composition. Heating SO at 1408C for 31 h increased its content in secondary oxidation products and in some FA isomers asc9,t11-CLA and di-trans CLA. This led to increases in di-trans CLA in liver and in t9,c12-18:2 in meat. The c9,t11-CLA was the most incorporated CLA isomer in tissues. The dietary supplementation with a-TA did not affect the FA composition of plasma, liver or meat. The cooking of vacuum-packed rabbit meat at 788C for 5 min reduced significantly but slightly its polyunsaturated FA content. The dietary supplementation with Zn did not modify the content of Zn, Fe or Se in meat, but it reduced its Cu content. On the other hand, it increased the content of some FAs in meat when SO heated at 1408C for 31 h was added to feeds.
Resumo:
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
The effects of diet composition and ration size on the activities of key enzymes involved in intermediary metabolism were studied in the liver of gilthead sea bream (Sparus aurata). Highcarbohydrate, low-protein diets stimulated 6-phosphofructo 1-kinase (EC 2.7.1.11), pyruvate kinase (EC 2.7.1.40), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) enzyme activities, while they decreased alanine aminotransferase (EC 2.6.1.2) activity. A high degree of correlation was found between food ration size and the activity of the enzymes 6-phosphofructo 1-kinase, pyruvate kinase, glucose-6-phosphate dehydrogenase (positive correlations) and fructose-1,6-bisphosphatase (EC 3.1.3.11) (negative correlation). These correlations matched well with the high correlation also found between ration size and growth rate in starved fish refed for 22 d. Limited feeding (5 g/kg body weight) for 22 d decreased the activities of the key enzymes for glycolysis and lipogenesis, and alanine aminotransferase activity. The findings presented here indicate a high level of metabolic adaptation to both diet type and ration size. In particular, adaptation of enzyme activities to the consumption of a diet with a high carbohydrate level suggests that a carnivorous fish like Sparus aurata can tolerate partial replacement of protein by carbohydrate in the commercial diets supplied in culture. The relationship between enzyme activities, ration size and fish growth indicates that the enzymes quickly respond to dietary manipulations of cultured fish.
Resumo:
Background: The enzyme fatty acid synthase (FASN) is highly expressed in many human carcinomas and its inhibition is cytotoxic to human cancer cells. The use of FASN inhibitors has been limited until now by anorexia and weight loss, which is associated with the stimulation of fatty acid oxidation. Materials and Methods: The in vitro effect of (-)-epigallocatechin-3-gallate (EGCG) on fatty acid metabolism enzymes, on apoptosis and on cell signalling was evaluated. In vivo, the effect of EGCG on animal body weight was addressed. Results: EGCG inhibited FASN activity, induced apoptosis and caused a marked decrease of human epidermal growth factor receptor 2 (HER2), phosphatidylinositol 3-kinase (PI3K)/AKT and extracellular (signal)-regulated kinase (ERK) 1/2 proteins, in breast cancer cells. EGCG did not induce a stimulatory effect on CPT-1 activity in vitro (84% of control), or on animal body weight in vivo (99% of control). Conclusion: EGCG is a FASN inhibitor with anticancer activity which does not exhibit cross-activation of fatty acid oxidation and does not induce weight loss, suggesting its potential use as an anticancer drug.
Resumo:
Purpose The purpose of the present study was to evaluate the retinal toxicity of a single dose of intravitreal docosahexaenoic acid (DHA) in rabbit eyes over a short-term period. Methods Sixteen New Zealand albino rabbits were selected for this pre-clinical study. Six concentrations of DHA (Brudy Laboratories, Barcelona, Spain) were prepared: 10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µl, 50 µg/50 µl, 25 µg/50 µl, and 5 µg/50 µl. Each concentration was injected intravitreally in the right eye of two rabbits. As a control, the vehicle solution was injected in one eye of four animals. Retinal safety was studied by slit-lamp examination, and electroretinography. All the rabbits were euthanized one week after the intravitreal injection of DHA and the eyeballs were processed to morphologic and morphometric histological examination by light microscopy. At the same time aqueous and vitreous humor samples were taken to quantify the concentration of omega-3 acids by gas chromatography. Statistical analysis was performed by SPSS 21.0. Results Slit-lamp examination revealed an important inflammatory reaction on the anterior chamber of the rabbits injected with the higher concentrations of DHA (10 mg/50 µl, 5 mg/50 µl, 2'5 mg/50 µ) Lower concentrations showed no inflammation. Electroretinography and histological studies showed no significant difference between control and DHA-injected groups except for the group injected with 50 µg/50 µl. Conclusions Our results indicate that administration of intravitreal DHA is safe in the albino rabbit model up to the maximum tolerated dose of 25 µg/50 µl. Further studies should be performed in order to evaluate the effect of intravitreal injection of DHA as a treatment, alone or in combination, of different retinal diseases.
Resumo:
Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.
Resumo:
Abstract Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30 mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3 h), on 1 day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30 mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (1050 μM) for 6 or 48 h significantly increased basal Ca2 +, reduced basal Na+ levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.
Resumo:
The effect of pork fat reduction (from 44% to 20% final fat content) and its partial substitution by sunflower oil (3% addition) on the physicochemical, instrumental and sensory properties throughout storage time of small caliber non-acid fermented sausages (fuet type) with reduced sodium content (with partial substitution of NaCl by KCl and K-lactate) and without direct addition of nitrate and nitrite (natural nitrate source used instead), was studied. Results showed that sausages with reduced fat (10% initial fat content) and with acceptable sensory characteristics can be obtained by adding to the shoulder lean (8% fat content) during the grinding, either 3.3% backfat (3% fat content) or 3% sunflower oil, both previously finely comminuted with lean. Furthermore, sunflower oil showed to be suitable for partial pork backfat substitution in very lean fermented sausages, conferring desirable sensory properties similar to those of sausages with standard fat content. The sensory quality of the sausages was maintained after three-month cold storage in modified atmosphere.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.
Resumo:
Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.