115 resultados para 3D simulation
Resumo:
One of the main problems in transmission electron microscopy in thebiological field is the tri-dimensionality. This article explains the technicalprocedures and requirements to prepare biological specimens preserving themclosest to their native state to perform 3D reconstruction of the macromolecularcomplexes and cellular structures in their natural environment.
Resumo:
In this paper, we present a computer simulation study of the ion binding process at an ionizable surface using a semi-grand canonical Monte Carlo method that models the surface as a discrete distribution of charged and neutral functional groups in equilibrium with explicit ions modelled in the context of the primitive model. The parameters of the simulation model were tuned and checked by comparison with experimental titrations of carboxylated latex particles in the presence of different ionic strengths of monovalent ions. The titration of these particles was analysed by calculating the degree of dissociation of the latex functional groups vs. pH curves at different background salt concentrations. As the charge of the titrated surface changes during the simulation, a procedure to keep the electroneutrality of the system is required. Here, two approaches are used with the choice depending on the ion selected to maintain electroneutrality: counterion or coion procedures. We compare and discuss the difference between the procedures. The simulations also provided a microscopic description of the electrostatic double layer (EDL) structure as a function of p H and ionic strength. The results allow us to quantify the effect of the size of the background salt ions and of the surface functional groups on the degree of dissociation. The non-homogeneous structure of the EDL was revealed by plotting the counterion density profiles around charged and neutral surface functional groups.
Resumo:
Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
We present a seabed profile estimation and following method for close proximity inspection of 3D underwater structures using autonomous underwater vehicles (AUVs). The presented method is used to determine a path allowing the AUV to pass its sensors over all points of the target structure, which is known as coverage path planning. Our profile following method goes beyond traditional seabed following at a safe altitude and exploits hovering capabilities of recent AUV developments. A range sonar is used to incrementally construct a local probabilistic map representation of the environment and estimates of the local profile are obtained via linear regression. Two behavior-based controllers use these estimates to perform horizontal and vertical profile following. We build upon these tools to address coverage path planning for 3D underwater structures using a (potentially inaccurate) prior map and following cross-section profiles of the target structure. The feasibility of the proposed method is demonstrated using the GIRONA 500 AUV both in simulation using synthetic and real-world bathymetric data and in pool trials
Resumo:
We present a computer-simulation study of the effect of the distribution of energy barriers in an anisotropic magnetic system on the relaxation behavior of the magnetization. While the relaxation law for the magnetization can be approximated in all cases by a time logarithmic decay, the law for the dependence of the magnetic viscosity with temperature is found to be quite sensitive to the shape of the distribution of barriers. The low-temperature region for the magnetic viscosity never extrapolates to a positive no-null value. Moreover our computer simulation results agree reasonably well with some recent relaxation experiments on highly anisotropic single-domain particles.
Resumo:
Durante los últimos años el Institut Català d’Arquelogia Clàssica, el Museu d’Història de Tarragona, contando con la colaboración de la Generalitat de Catalunya, han desarrallado el proyecto Planimetría Arqueológica de Tárraco, destinado a la elaboración de una planta arqueológica global en la cual se recogieran intervenciones y noticias referentes a los hallazgos arqueológicos existentes. Este trabajo fue publicado utilizando como plataforma de trabajo un SIG construido para tal fin (Macias et al. 2007). Sin embargo, un problema de difícil solución arqueológica venía dado por las transformaciones urbanísticas de la ciudad, sufridas en su mayor parte a lo largo de los siglos XIX y XX. Éstas habían provocado la pérdida irremediable de gran parte de la elevación que acogiera la ciudad romana, cambiando substancialmente su aspecto original. Ante esta situación y como proyecto paralelo a la realización de la Planimetría Arqueológica de Tarragona se plantearon formas de cubrir este vacío. Se presenta en esta comunicación una propuesta metodológica para la reconstrucción de los grandes «vacíos topográficos » originados por la evolución urbanística de Tarragona mediante la obtención e integración en un SIG de diversos tipos de información documental. En estas zonas rebajadas no resulta posible la obtención de información estratigráfica y arqueológica, por lo que es imprescindible la definición de vías metodológicas alternativas basadas en la extrapolación de datos extraídos de la cartografía histórica, panorámicas del XVI o fotografías tomadas en los siglos XIX y XX. Esta técnica permite aplicar los resultados obtenidos en los nuevos análisis interpretativos, complementando así la interpretación arqueológica de la topografía urbana de la ciudad romana. A partir de esta información, y aplicando funciones y técnicas de interpolación propias de un GIS, se propone aquí un modelo de relieve de la ciudad de Tarraco.
Resumo:
Postprint (published version)
Resumo:
This paper describes the port interconnection of two subsystems: a power electronics subsystem (a back-to-back AC/CA converter (B2B), coupled to a phase of the power grid), and an electromechanical subsystem (a doubly-fed induction machine (DFIM). The B2B is a variable structure system (VSS), due to presence of control-actuated switches: however, from a modelling simulation, as well as a control-design, point of view, it is sensible to consider modulated transformers (MTF in the bond graph language) instead of the pairs of complementary switches. The port-Hamiltonian models of both subsystems are presented and, using a power-preserving interconnection, the Hamiltonian description of the whole system is obtained; detailed bond graphs of all subsystems and the complete system are also provided. Using passivity-based controllers computed in the Hamiltonian formalism for both subsystems, the whole model is simulated; simulations are run to rest the correctness and efficiency of the Hamiltonian network modelling approach used in this work.
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
The widespread implementation of GIS-based 3D topographical models has been a great aid in the development and testing of archaeological hypotheses. In this paper, a topographical reconstruction of the ancient city of Tarraco, the Roman capital of the Tarraconensis province, is presented. This model is based on topographical data obtained through archaeological excavations, old photographic documentation, georeferenced archive maps depicting the pre-modern city topography, modern detailed topographical maps and differential GPS measurements. The addition of the Roman urban architectural features to the model offers the possibility to test hypotheses concerning the ideological background manifested in the city shape. This is accomplished mainly through the use of 3D views from the main city accesses. These techniques ultimately demonstrate the ‘theatre-shaped’ layout of the city (to quote Vitrubius) as well as its southwest oriented architecture, whose monumental character was conceived to present a striking aspect to visitors, particularly those arriving from the sea.
Resumo:
Simulation is a useful tool in cardiac SPECT to assess quantification algorithms. However, simple equation-based models are limited in their ability to simulate realistic heart motion and perfusion. We present a numerical dynamic model of the left ventricle, which allows us to simulate normal and anomalous cardiac cycles, as well as perfusion defects. Bicubic splines were fitted to a number of control points to represent endocardial and epicardial surfaces of the left ventricle. A transformation from each point on the surface to a template of activity was made to represent the myocardial perfusion. Geometry-based and patient-based simulations were performed to illustrate this model. Geometry-based simulations modeled ~1! a normal patient, ~2! a well-perfused patient with abnormal regional function, ~3! an ischaemic patient with abnormal regional function, and ~4! a patient study including tracer kinetics. Patient-based simulation consisted of a left ventricle including a realistic shape and motion obtained from a magnetic resonance study. We conclude that this model has the potential to study the influence of several physical parameters and the left ventricle contraction in myocardial perfusion SPECT and gated-SPECT studies.
Resumo:
The geometric characterisation of tree orchards is a high-precision activity comprising the accurate measurement and knowledge of the geometry and structure of the trees. Different types of sensors can be used to perform this characterisation. In this work a terrestrial LIDAR sensor (SICK LMS200) whose emission source was a 905-nm pulsed laser diode was used. Given the known dimensions of the laser beam cross-section (with diameters ranging from 12 mm at the point of emission to 47.2 mm at a distance of 8 m), and the known dimensions of the elements that make up the crops under study (flowers, leaves, fruits, branches, trunks), it was anticipated that, for much of the time, the laser beam would only partially hit a foreground target/object, with the consequent problem of mixed pixels or edge effects. Understanding what happens in such situations was the principal objective of this work. With this in mind, a series of tests were set up to determine the geometry of the emitted beam and to determine the response of the sensor to different beam blockage scenarios. The main conclusions that were drawn from the results obtained were: (i) in a partial beam blockage scenario, the distance value given by the sensor depends more on the blocked radiant power than on the blocked surface area; (ii) there is an area that influences the measurements obtained that is dependent on the percentage of blockage and which ranges from 1.5 to 2.5 m with respect to the foreground target/object. If the laser beam impacts on a second target/object located within this range, this will affect the measurement given by the sensor. To interpret the information obtained from the point clouds provided by the LIDAR sensors, such as the volume occupied and the enclosing area, it is necessary to know the resolution and the process for obtaining this mesh of points and also to be aware of the problem associated with mixed pixels.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.