271 resultados para 240503 Thermodynamics and Statistical Physics
Resumo:
A simple model is introduced that exhibits a noise-induced front propagation and where the noise enters multiplicatively. The invasion of the unstable state is studied, both theoretically and numerically. A good agreement is obtained for the mean value of the order parameter and the mean front velocity using the analytical predictions of the linear marginal stability analysis.
Resumo:
We study the interaction between two independent nonlinear oscillators competing through a neutral excitable element. The first oscillator, completely deterministic, acts as a normal pacemaker sending pulses to the neutral element which fires when it is excited by these pulses. The second oscillator, endowed with some randomness, though unable to make the excitable element to beat, leads to the occasional suppression of its firing. The missing beats or errors are registered and their statistics analyzed in terms of the noise intensity and the periods of both oscillators. This study is inspired in some complex rhythms such as a particular class of heart arrhythmia.
Resumo:
The effects of a disordered medium in the growth of unstable interfaces are studied by means of two local models with multiplicative and additive quenched disorder, respectively. For short times and large pushing the multiplicative quenched disorder is equivalent to a time-dependent noise. In this regime, the linear dispersion relation contains a destabilizing contribution introduced by the noise. For long times, the interface always gets pinned. We model the systematics of the pinned shapes by means of an effective nonlinear model. These results show good agreement with numerical simulations. For the additive noise we find numerically that a depinning transition occurs.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.
Resumo:
We present a model that allows for the derivation of the experimentally accesible observables: spatial steps, mean velocity, stall force, useful power, efficiency and randomness, etc. as a function of the [adenosine triphosphate] concentration and an external load F. The model presents a minimum of adjustable parameters and the theoretical predictions compare well with the available experimental results.
Resumo:
We study the problem of the advection of passive particles with inertia in a two-dimensional, synthetic, and stationary turbulent flow. The asymptotic analytical result and numerical simulations show the importance of inertial bias in collecting the particles preferentially in certain regions of the flow, depending on their density relative to that of the flow. We also study how these aggregates are affected when a simple chemical reaction mechanism is introduced through a Eulerian scheme. We find that inertia can be responsible for maintaining a stationary concentration pattern even under nonfavorable reactive conditions or destroying it under favorable ones.
Resumo:
In this paper, we study dynamical aspects of the two-dimensional (2D) gonihedric spin model using both numerical and analytical methods. This spin model has vanishing microscopic surface tension and it actually describes an ensemble of loops living on a 2D surface. The self-avoidance of loops is parametrized by a parameter ¿. The ¿=0 model can be mapped to one of the six-vertex models discussed by Baxter, and it does not have critical behavior. We have found that allowing for ¿¿0 does not lead to critical behavior either. Finite-size effects are rather severe, and in order to understand these effects, a finite-volume calculation for non-self-avoiding loops is presented. This model, like his 3D counterpart, exhibits very slow dynamics, but a careful analysis of dynamical observables reveals nonglassy evolution (unlike its 3D counterpart). We find, also in this ¿=0 case, the law that governs the long-time, low-temperature evolution of the system, through a dual description in terms of defects. A power, rather than logarithmic, law for the approach to equilibrium has been found.
Resumo:
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time, and correlation length appear explicitly. The different effects of these parameters are discussed for the Ginzburg-Landau and Schlögl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical predictions.
Resumo:
Coherence resonance occurring in semiconductor lasers with optical feedback is studied via the Lang-Kobayashi model with external nonwhite noise in the pumping current. The temporal correlation and the amplitude of the noise have a highly relevant influence in the system, leading to an optimal coherent response for suitable values of both the noise amplitude and correlation time. This phenomenon is quantitatively characterized by means of several statistical measures.
Resumo:
The propagation of an initially planar front is studied within the framework of the photosensitive Belousov-Zhabotinsky reaction modulated by a smooth spatial variation of the local front velocity in the direction perpendicular to front propagation. Under this modulation, the wave front develops several fingers corresponding to the local maxima of the modulation function. After a transient, the wave front achieves a stationary shape that does not necessarily coincide with the one externally imposed by the modulation. Theoretical predictions for the selection criteria of fingers and steady-state velocity are experimentally validated.
Resumo:
We investigate numerically the scattering of a moving discrete breather on a pair of junctions in a Fermi-Pasta-Ulam chain. These junctions delimit an extended region with different masses of the particles. We consider (i) a rectangular trap, (ii) a wedge shaped trap, and (iii) a smoothly varying convex or concave mass profile. All three cases lead to DB confinement, with the ease of trapping depending on the profile of the trap. We also study the collision and trapping of two DBs within the profile as a function of trap width, shape, and approach time at the two junctions. The latter controls whether one or both DBs are trapped.
Resumo:
We study the exact ground state of the two-dimensional random-field Ising model as a function of both the external applied field B and the standard deviation ¿ of the Gaussian random-field distribution. The equilibrium evolution of the magnetization consists in a sequence of discrete jumps. These are very similar to the avalanche behavior found in the out-of-equilibrium version of the same model with local relaxation dynamics. We compare the statistical distributions of magnetization jumps and find that both exhibit power-law behavior for the same value of ¿. The corresponding exponents are compared.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
One-dimensional arrays of nonlinear electronic circuits are shown to support propagation of pulses when operating in a locally bistable regime, provided the circuits are under the influence of a global noise. These external random fluctuations are applied to the parameter that controls the transition between bistable and monostable dynamics in the individual circuits. As a result, propagating fronts become destabilized in the presence of noise, and the system self-organizes to allow the transmission of pulses. The phenomenon is also observed in weakly coupled arrays, when propagation failure arises in the absence of noise.