80 resultados para multivariate electronic spectroscopy
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.
Resumo:
High-sensitivity electron paramagnetic resonance experiments have been carried out in fresh and stressed Mn12 acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing process introduces a E(Sx2-Sy2) transverse anisotropy term in the spin Hamiltonian. From the behavior of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E=22 mK, corresponding to a concentration of dislocations per unit cell of c=10-3.
Resumo:
An x-ray photoelectron spectroscopy (XPS) analysis of Nb/Al wedge bilayers, oxidized by both plasma and natural oxidation, is reported. The main goal is to show that the oxidation state¿i.e., O:(oxidize)Al ratio¿, structure and thickness of the surface oxide layer, as well as the thickness of the metallic Al leftover, as functions of the oxidation procedure, can be quantitatively evaluated from the XPS spectra. This is relevant to the detailed characterization of the insulating barriers in (magnetic) tunnel junctions
Resumo:
We present the result of polar angle resolved x¿ray photoemission spectroscopy on Al(111)/O and cluster calculations of the O(1s) binding energy (BE) for various model situations. In the experimental data two O(1s) peaks are observed, separated by 1.3 eV. The angular behavior (depth¿resolution) could indicate that the lower BE peak is associated with an O atom under the surface, and the higher BE peak with an O atom above the surface. Equally, it could indicate oxygen islands on the surface where the perimeter atoms have a higher O(1s) BE than the interior atoms. The cluster calculations show that the former interpretation cannot be correct, since an O ads below the surface has a higher calculated O(1s) BE than one above. Cluster calculations simulating oxygen islands are, however, consistent with the experimental data.
Resumo:
The O 1s x-ray photoelectron spectroscopy spectrum for Al(111)/O at 300 K shows two components whose behavior as a function of time and variation of detection angle are consistent with either (a) a surface species represented by the higher binding-energy (BE) component and a subsurface species represented by the lower BE component, or (b) small close-packed oxygen islands with the interior atoms represented by the lower BE component and the perimeter atoms by the higher BE component. We have modeled both situations using ab initio Hartree-Fock wave functions for clusters of Al and O atoms. For an O atom in a threefold site, it was found that a below-surface position gave a higher O 1s BE than an above-surface position, incompatible with interpretation (a). This change in the O 1s BE could arise because the bond for O to Al may have a more covalent character when the O is below the surface than when it is above the surface. We present evidence consistent with this view. An O adatom island with all the O atoms in threefold sites gives calculated O 1s BE's which are significantly higher for the perimeter O atoms. Further, the results for an isolated O island without the Al substrate present also give higher BE¿s for the perimeter atoms. Both these results are consistent with interpretation (b). Published scanning-tunneling-microscopy data supports the suggestion that the chemisorbed state consists of small, close-packed islands, whereas the presence of two vibrational modes in high-resolution electron-energy-loss spectroscopy data has been interpreted as representing surface and subsurface oxygen atoms. In light of the present results, we suggest that a vibrational interpretation in terms of interior and perimeter adatoms should be considered.
Resumo:
The electronic structure of the wurtzite-type phase of aluminum nitride has been investigated by means of periodic ab initio Hartree-Fock calculations. The binding energy, lattice parameters (a,c), and the internal coordinate (u) have been calculated. All structural parameters are in excellent agreement with the experimental data. The electronic structure and bonding in AlN are analyzed by means of density-of-states projections and electron-density maps. The calculated values of the bulk modulus, its pressure derivative, the optical-phonon frequencies at the center of the Brillouin zone, and the full set of elastic constants are in good agreement with the experimental data.
Resumo:
The results are presented of a combined periodic and cluster model approach to the electronic structure and magnetic interactions in the spin-chain compounds Ca2CuO3 and Sr2CuO3. An extended t-J model is presented that includes in-chain and interchain hopping and magnetic interaction processes with parameters extracted from ab initio calculations. For both compounds, the in-chain magnetic interaction is found to be around -240 meV, larger than in any of the other cuprates reported in the literature. The interchain magnetic coupling is found to be weakly antiferromagnetic, -1 meV. The effective in-chain hopping parameters are estimated to be ~650 meV for both compounds, whereas the value of the interchain hopping parameter is 30 meV for Sr2CuO3 and 40 meV for Ca2CuO3, in line with the larger interchain distance in the former compound. These effective parameters are shown to be consistent with expressions recently suggested for the Néel temperature and the magnetic moments, and with relations that emerge from the t-J model Hamiltonian. Next, we investigate the physical nature of the band gap. Periodic calculations indicate that an interpretation in terms of a charge-transfer insulator is the most appropriate one, in contrast to the suggestion of a covalent correlated insulator recently reported in the literature.
Resumo:
The magnetic coupling constant of selected cuprate superconductor parent compounds has been determined by means of embedded cluster model and periodic calculations carried out at the same level of theory. The agreement between both approaches validates the cluster model. This model is subsequently employed in state-of-the-art configuration interaction calculations aimed to obtain accurate values of the magnetic coupling constant and hopping integral for a series of superconducting cuprates. Likewise, a systematic study of the performance of different ab initio explicitly correlated wave function methods and of several density functional approaches is presented. The accurate determination of the parameters of the t-J Hamiltonian has several consequences. First, it suggests that the appearance of high-Tc superconductivity in existing monolayered cuprates occurs with J/t in the 0.20¿0.35 regime. Second, J/t=0.20 is predicted to be the threshold for the existence of superconductivity and, third, a simple and accurate relationship between the critical temperatures at optimum doping and these parameters is found. However, this quantitative electronic structure versus Tc relationship is only found when both J and t are obtained at the most accurate level of theory.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.
Resumo:
The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.