73 resultados para grid simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a methodology to determine the parameters used in the simulation of delamination in composite materials using decohesion finite elements. A closed-form expression is developed to define the stiffness of the cohesive layer. A novel procedure that allows the use of coarser meshes of decohesion elements in large-scale computations is proposed. The procedure ensures that the energy dissipated by the fracture process is correctly computed. It is shown that coarse-meshed models defined using the approach proposed here yield the same results as the models with finer meshes normally used in the simulation of fracture processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A thermodynamically consistent damage model for the simulation of progressive delamination under variable mode ratio is presented. The model is formulated in the context of the Damage Mechanics. The constitutive equation that results from the definition of the free energy as a function of a damage variable is used to model the initiation and propagation of delamination. A new delamination initiation criterion is developed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation proposed accounts for crack closure effets avoiding interfacial penetration of two adjacent layers aftercomplete decohesion. The model is implemented in a finite element formulation. The numerical predictions given by the model are compared with experimental results

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quickremovalofbiosolidsinaquaculturefacilities,andspeciallyinrecirculatingaquaculturesystems(RAS),isoneofthemostimportantstepinwastemanagement.Sedimentationdynamicsofbiosolidsinanaquaculturetankwilldeterminetheiraccumulationatthebottomofthetank.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of two-dimensional spectral analysis applied to terrain heights in order to determine characteristic terrain spatial scales and its subsequent use for the objective definition of an adequate grid size required to resolve terrain forcing are presented in this paper. In order to illustrate the influence of grid size, atmospheric flow in a complex terrain area of the Spanish east coast is simulated by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical model using different horizontal grid resolutions. In this area, a grid size of 2 km is required to account for 95% of terrain variance. Comparison among results of the different simulations shows that, although the main wind behavior does not change dramatically, some small-scale features appear when using a resolution of 2 km or finer. Horizontal flow pattern differences are significant both in the nighttime, when terrain forcing is more relevant, and in the daytime, when thermal forcing is dominant. Vertical structures also are investigated, and results show that vertical advection is influenced highly by the horizontal grid size during the daytime period. The turbulent kinetic energy and potential temperature vertical cross sections show substantial differences in the structure of the planetary boundary layer for each model configuration