125 resultados para continuous-time models
Resumo:
This paper characterizes a mixed strategy Nash equilibrium in a one-dimensional Downsian model of two-candidate elections with a continuous policy space, where candidates are office motivated and one candidate enjoys a non-policy advantage over the other candidate. We assume that voters have quadratic preferences over policies and that their ideal points are drawn from a uniform distribution over the unit interval. In our equilibrium the advantaged candidate chooses the expected median voter with probability one and the disadvantaged candidate uses a mixed strategy that is symmetric around it. We show that this equilibrium exists if the number of voters is large enough relative to the size of the advantage.
Resumo:
In a recent paper Bermúdez [2009] used bivariate Poisson regression models for ratemaking in car insurance, and included zero-inflated models to account for the excess of zeros and the overdispersion in the data set. In the present paper, we revisit this model in order to consider alternatives. We propose a 2-finite mixture of bivariate Poisson regression models to demonstrate that the overdispersion in the data requires more structure if it is to be taken into account, and that a simple zero-inflated bivariate Poisson model does not suffice. At the same time, we show that a finite mixture of bivariate Poisson regression models embraces zero-inflated bivariate Poisson regression models as a special case. Additionally, we describe a model in which the mixing proportions are dependent on covariates when modelling the way in which each individual belongs to a separate cluster. Finally, an EM algorithm is provided in order to ensure the models’ ease-of-fit. These models are applied to the same automobile insurance claims data set as used in Bermúdez [2009] and it is shown that the modelling of the data set can be improved considerably.
Resumo:
The main result is a proof of the existence of a unique viscosity solution for Hamilton-Jacobi equation, where the hamiltonian is discontinuous with respect to variable, usually interpreted as the spatial one. Obtained generalized solution is continuous, but not necessarily differentiable.
Resumo:
Pre-print.
Resumo:
Pre-print.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper examines a dataset which is modeled well by thePoisson-Log Normal process and by this process mixed with LogNormal data, which are both turned into compositions. Thisgenerates compositional data that has zeros without any need forconditional models or assuming that there is missing or censoreddata that needs adjustment. It also enables us to model dependenceon covariates and within the composition
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts
Resumo:
The composition of the labour force is an important economic factor for a country.Often the changes in proportions of different groups are of interest.I this paper we study a monthly compositional time series from the Swedish LabourForce Survey from 1994 to 2005. Three models are studied: the ILR-transformed series,the ILR-transformation of the compositional differenced series of order 1, and the ILRtransformationof the compositional differenced series of order 12. For each of thethree models a VAR-model is fitted based on the data 1994-2003. We predict the timeseries 15 steps ahead and calculate 95 % prediction regions. The predictions of thethree models are compared with actual values using MAD and MSE and the predictionregions are compared graphically in a ternary time series plot.We conclude that the first, and simplest, model possesses the best predictive power ofthe three models
Resumo:
Viruses rapidly evolve, and HIV in particular is known to be one of the fastest evolving human viruses. It is now commonly accepted that viral evolution is the cause of the intriguing dynamics exhibited during HIV infections and the ultimate success of the virus in its struggle with the immune system. To study viral evolution, we use a simple mathematical model of the within-host dynamics of HIV which incorporates random mutations. In this model, we assume a continuous distribution of viral strains in a one-dimensional phenotype space where random mutations are modelled by di ffusion. Numerical simulations show that random mutations combined with competition result in evolution towards higher Darwinian fitness: a stable traveling wave of evolution, moving towards higher levels of fi tness, is formed in the phenoty space.
Resumo:
We analyse in a unified way how the presence of a trader with privilege information makes the market to be efficient when the release time is known. We establish a general relation between the problem of finding an equilibrium and the problem of enlargement of filtrations. We also consider the case where the time of announcement is random. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time.
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
This paper studies the limits of discrete time repeated games with public monitoring. We solve and characterize the Abreu, Milgrom and Pearce (1991) problem. We found that for the "bad" ("good") news model the lower (higher) magnitude events suggest cooperation, i.e., zero punishment probability, while the highrt (lower) magnitude events suggest defection, i.e., punishment with probability one. Public correlation is used to connect these two sets of signals and to make the enforceability to bind. The dynamic and limit behavior of the punishment probabilities for variations in ... (the discount rate) and ... (the time interval) are characterized, as well as the limit payo¤s for all these scenarios (We also introduce uncertainty in the time domain). The obtained ... limits are to the best of my knowledge, new. The obtained ... limits coincide with Fudenberg and Levine (2007) and Fudenberg and Olszewski (2011), with the exception that we clearly state the precise informational conditions that cause the limit to converge from above, to converge from below or to degenerate. JEL: C73, D82, D86. KEYWORDS: Repeated Games, Frequent Monitoring, Random Pub- lic Monitoring, Moral Hazard, Stochastic Processes.
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
We present a detailed analytical and numerical study of the avalanche distributions of the continuous damage fiber bundle model CDFBM . Linearly elastic fibers undergo a series of partial failure events which give rise to a gradual degradation of their stiffness. We show that the model reproduces a wide range of mechanical behaviors. We find that macroscopic hardening and plastic responses are characterized by avalanche distributions, which exhibit an algebraic decay with exponents between 5/2 and 2 different from those observed in mean-field fiber bundle models. We also derive analytically the phase diagram of a family of CDFBM which covers a large variety of potential avalanche size distributions. Our results provide a unified view of the statistics of breaking avalanches in fiber bundle models