109 resultados para agent-oriented programming
Resumo:
In a number of programs for gene structure prediction in higher eukaryotic genomic sequences, exon prediction is decoupled from gene assembly: a large pool of candidate exons is predicted and scored from features located in the query DNA sequence, and candidate genes are assembled from such a pool as sequences of nonoverlapping frame-compatible exons. Genes are scored as a function of the scores of the assembled exons, and the highest scoring candidate gene is assumed to be the most likely gene encoded by the query DNA sequence. Considering additive gene scoring functions, currently available algorithms to determine such a highest scoring candidate gene run in time proportional to the square of the number of predicted exons. Here, we present an algorithm whose running time grows only linearly with the size of the set of predicted exons. Polynomial algorithms rely on the fact that, while scanning the set of predicted exons, the highest scoring gene ending in a given exon can be obtained by appending the exon to the highest scoring among the highest scoring genes ending at each compatible preceding exon. The algorithm here relies on the simple fact that such highest scoring gene can be stored and updated. This requires scanning the set of predicted exons simultaneously by increasing acceptor and donor position. On the other hand, the algorithm described here does not assume an underlying gene structure model. Indeed, the definition of valid gene structures is externally defined in the so-called Gene Model. The Gene Model specifies simply which gene features are allowed immediately upstream which other gene features in valid gene structures. This allows for great flexibility in formulating the gene identification problem. In particular it allows for multiple-gene two-strand predictions and for considering gene features other than coding exons (such as promoter elements) in valid gene structures.
Resumo:
Plan recognition is the problem of inferring the goals and plans of an agent from partial observations of her behavior. Recently, it has been shown that the problem can be formulated and solved usingplanners, reducing plan recognition to plan generation.In this work, we extend this model-basedapproach to plan recognition to the POMDP setting, where actions are stochastic and states are partially observable. The task is to infer a probability distribution over the possible goals of an agent whose behavior results from a POMDP model. The POMDP model is shared between agent and observer except for the true goal of the agent that is hidden to the observer. The observations are action sequences O that may contain gaps as some or even most of the actions done by the agent may not be observed. We show that the posterior goal distribution P(GjO) can be computed from the value function VG(b) over beliefs b generated by the POMDPplanner for each possible goal G. Some extensionsof the basic framework are discussed, and a numberof experiments are reported.
Resumo:
The project presented, iCognos, consists of a flexible platform to assist end-users in performing a series of mental tasks with a sensitized mobile telerobotic platform aimed at mitigating the problems associated to cognitive disorders with an ecological cognition approach.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
I study the optimal project choice when the principal relies on the agent in charge of production for project evaluation. The principal has to choose between a safe project generating a fixed revenue and a risky project generating an uncertain revenue. The agent has private information about the production cost under each project but also about the signal regarding the profitability of the risky project. If the signal favoring the adoption of the risky project is goods news to the agent, integrating production and project evaluation tasks does not generate any loss compared to the benchmark in which the principal herself receives the signal. By contrast, if it is bad news, task integration creates an endogenous reservation utility which is type-dependent and thereby generates countervailing incentives, which can make a bias toward either project optimal. Our results can offer an explanation for why good firms can go bad and a rationale for the separation of day-to-day operating decisions from long-term strategic decisions stressed by Williamson.
Resumo:
We present a new unifying framework for investigating throughput-WIP(Work-in-Process) optimal control problems in queueing systems,based on reformulating them as linear programming (LP) problems withspecial structure: We show that if a throughput-WIP performance pairin a stochastic system satisfies the Threshold Property we introducein this paper, then we can reformulate the problem of optimizing alinear objective of throughput-WIP performance as a (semi-infinite)LP problem over a polygon with special structure (a thresholdpolygon). The strong structural properties of such polygones explainthe optimality of threshold policies for optimizing linearperformance objectives: their vertices correspond to the performancepairs of threshold policies. We analyze in this framework theversatile input-output queueing intensity control model introduced byChen and Yao (1990), obtaining a variety of new results, including (a)an exact reformulation of the control problem as an LP problem over athreshold polygon; (b) an analytical characterization of the Min WIPfunction (giving the minimum WIP level required to attain a targetthroughput level); (c) an LP Value Decomposition Theorem that relatesthe objective value under an arbitrary policy with that of a giventhreshold policy (thus revealing the LP interpretation of Chen andYao's optimality conditions); (d) diminishing returns and invarianceproperties of throughput-WIP performance, which underlie thresholdoptimality; (e) a unified treatment of the time-discounted andtime-average cases.
Resumo:
Agent-based computational economics is becoming widely used in practice. This paperexplores the consistency of some of its standard techniques. We focus in particular on prevailingwholesale electricity trading simulation methods. We include different supply and demandrepresentations and propose the Experience-Weighted Attractions method to include severalbehavioural algorithms. We compare the results across assumptions and to economic theorypredictions. The match is good under best-response and reinforcement learning but not underfictitious play. The simulations perform well under flat and upward-slopping supply bidding,and also for plausible demand elasticity assumptions. Learning is influenced by the number ofbids per plant and the initial conditions. The overall conclusion is that agent-based simulationassumptions are far from innocuous. We link their performance to underlying features, andidentify those that are better suited to model wholesale electricity markets.
Resumo:
Principal curves have been defined Hastie and Stuetzle (JASA, 1989) assmooth curves passing through the middle of a multidimensional dataset. They are nonlinear generalizations of the first principalcomponent, a characterization of which is the basis for the principalcurves definition.In this paper we propose an alternative approach based on a differentproperty of principal components. Consider a point in the space wherea multivariate normal is defined and, for each hyperplane containingthat point, compute the total variance of the normal distributionconditioned to belong to that hyperplane. Choose now the hyperplaneminimizing this conditional total variance and look for thecorresponding conditional mean. The first principal component of theoriginal distribution passes by this conditional mean and it isorthogonal to that hyperplane. This property is easily generalized todata sets with nonlinear structure. Repeating the search from differentstarting points, many points analogous to conditional means are found.We call them principal oriented points. When a one-dimensional curveruns the set of these special points it is called principal curve oforiented points. Successive principal curves are recursively definedfrom a generalization of the total variance.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
The paper proposes a numerical solution method for general equilibrium models with a continuum of heterogeneous agents, which combines elements of projection and of perturbation methods. The basic idea is to solve first for the stationary solutionof the model, without aggregate shocks but with fully specified idiosyncratic shocks. Afterwards one computes a first-order perturbation of the solution in the aggregate shocks. This approach allows to include a high-dimensional representation of the cross-sectional distribution in the state vector. The method is applied to a model of household saving with uninsurable income risk and liquidity constraints. The model includes not only productivity shocks, but also shocks to redistributive taxation, which cause substantial short-run variation in the cross-sectional distribution of wealth. If those shocks are operative, it is shown that a solution method based on very few statistics of the distribution is not suitable, while the proposed method can solve the model with high accuracy, at least for the case of small aggregate shocks. Techniques are discussed to reduce the dimension of the state space such that higher order perturbations are feasible.Matlab programs to solve the model can be downloaded.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to program small, devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Resumo:
La2/3Ca1/3MnO3 (LCMO) films have been deposited on (110)-oriented SrTiO3 (STO) substrates. X-ray diffraction and high-resolution electron microscopy reveal that the (110) LCMO films are epitaxial and anisotropically in-plane strained, with higher relaxation along the [1¿10] direction than along the [001] direction; x-ray absorption spectroscopy data signaled the existence of a single intermediate Mn3+/4+ 3d-state at the film surface. Their magnetic properties are compared to those of (001) LCMO films grown simultaneously on (001) STO substrates It is found that (110) LCMO films present a higher Curie temperature (TC) and a weaker decay of magnetization when approaching TC than their (001) LCMO counterparts. These improved films have been subsequently covered by nanometric STO layers. Conducting atomic-force experiments have shown that STO layers, as thin as 0.8 nm, grown on top of the (110) LCMO electrode, display good insulating properties. We will show that the electric conductance across (110) STO layers, exponentially depending on the barrier thickness, is tunnel-like. The barrier height in STO (110) is found to be similar to that of STO (001). These results show that the (110) LCMO electrodes can be better electrodes than (001) LCMO for magnetic tunnel junctions, and that (110) STO are suitable insulating barriers.