85 resultados para Two-dimensional mapping
Resumo:
Power transformations of positive data tables, prior to applying the correspondence analysis algorithm, are shown to open up a family of methods with direct connections to the analysis of log-ratios. Two variations of this idea are illustrated. The first approach is simply to power the original data and perform a correspondence analysis this method is shown to converge to unweighted log-ratio analysis as the power parameter tends to zero. The second approach is to apply the power transformation to thecontingency ratios, that is the values in the table relative to expected values based on the marginals this method converges to weighted log-ratio analysis, or the spectral map. Two applications are described: first, a matrix of population genetic data which is inherently two-dimensional, and second, a larger cross-tabulation with higher dimensionality, from a linguistic analysis of several books.
Resumo:
We represent interval ordered homothetic preferences with a quantitative homothetic utility function and a multiplicative bias. When preferences are weakly ordered (i.e. when indifference is transitive), such a bias equals 1. When indifference is intransitive, the biasing factor is a positive function smaller than 1 and measures a threshold of indifference. We show that the bias is constant if and only if preferences are semiordered, and we identify conditions ensuring a linear utility function. We illustrate our approach with indifference sets on a two dimensional commodity space.
Resumo:
Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.
Resumo:
Aquest projecte neix del interés personal de l’autor per a la indústria dels videojocs. El principal objectiu de l’aplicació és esdevenir un joc complet mitjançant l’ús de tècniques clàssicament empleades en el desenvolupament de jocs en dues dimensions de manera que la experiència i tècniques adquirides sigui el més reutilitzable possible.
Resumo:
Mitjançant imatges estereoscòpiques es poden detectar la posició respecte dela càmera dels objectes que apareixen en una escena. A partir de lesdiferències entre les imatges captades pels dos objectius es pot determinar laprofunditat dels objectes. Existeixen diversitat de tècniques de visió artificialque permeten calcular la localització dels objectes, habitualment amb l’objectiude reconstruir l’escena en 3D. Aquestes tècniques necessiten una gran càrregacomputacional, ja que utilitzen mètodes de comparació bidimensionals, i pertant, no es poden utilitzar per aplicacions en temps real.En aquest treball proposem un nou mètode d’anàlisi de les imatgesestereoscòpiques que ens permeti obtenir la profunditat dels objectes d’unaescena amb uns resultats acceptables. Aquest nou mètode es basa entransformar la informació bidimensional de la imatge en una informacióunidimensional per tal de poder fer la comparació de les imatges amb un baixcost computacional, i dels resultats de la comparació extreure’n la profunditatdels objectes dins l’escena. Això ha de permetre, per exemple, que aquestmètode es pugui implementar en un dispositiu autònom i li permeti realitzaroperacions de guiatge a través d’espais interiors i exteriors.
Resumo:
The absolute K magnitudes and kinematic parameters of about 350 oxygen-rich Long-Period Variable stars are calibrated, by means of an up-to-date maximum-likelihood method, using HIPPARCOS parallaxes and proper motions together with radial velocities and, as additional data, periods and V-K colour indices. Four groups, differing by their kinematics and mean magnitudes, are found. For each of them, we also obtain the distributions of magnitude, period and de-reddened colour of the base population, as well as de-biased period-luminosity-colour relations and their two-dimensional projections. The SRa semiregulars do not seem to constitute a separate class of LPVs. The SRb appear to belong to two populations of different ages. In a PL diagram, they constitute two evolutionary sequences towards the Mira stage. The Miras of the disk appear to pulsate on a lower-order mode. The slopes of their de-biased PL and PC relations are found to be very different from the ones of the Oxygen Miras of the LMC. This suggests that a significant number of so-called Miras of the LMC are misclassified. This also suggests that the Miras of the LMC do not constitute a homogeneous group, but include a significant proportion of metal-deficient stars, suggesting a relatively smooth star formation history. As a consequence, one may not trivially transpose the LMC period-luminosity relation from one galaxy to the other.
Resumo:
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements.
Resumo:
InAlAs/InGaAs/InP based high electron mobility transistor devices have been structurally and electrically characterized, using transmission electron microscopy and Raman spectroscopy and measuring Hall mobilities. The InGaAs lattice matched channels, with an In molar fraction of 53%, grown at temperatures lower than 530¿°C exhibit alloy decomposition driving an anisotropic InGaAs surface roughness oriented along [1math0]. Conversely, lattice mismatched channels with an In molar fraction of 75% do not present this lateral decomposition but a strain induced roughness, with higher strength as the channel growth temperature increases beyond 490¿°C. In both cases the presence of the roughness implies low and anisotropic Hall mobilities of the two dimensional electron gas.
Resumo:
Most sedimentary modelling programs developed in recent years focus on either terrigenous or carbonate marine sedimentation. Nevertheless, only a few programs have attempted to consider mixed terrigenous-carbonate sedimentation, and most of these are two-dimensional, which is a major restriction since geological processes take place in 3D. This paper presents the basic concepts of a new 3D mathematical forward simulation model for clastic sediments, which was developed from SIMSAFADIM, a previous 3D carbonate sedimentation model. The new extended model, SIMSAFADIM-CLASTIC, simulates processes of autochthonous marine carbonate production and accumulation, together with clastic transport and sedimentation in three dimensions of both carbonate and terrigenous sediments. Other models and modelling strategies may also provide realistic and efficient tools for prediction of stratigraphic architecture and facies distribution of sedimentary deposits. However, SIMSAFADIM-CLASTIC becomes an innovative model that attempts to simulate different sediment types using a process-based approach, therefore being a useful tool for 3D prediction of stratigraphic architecture and facies distribution in sedimentary basins. This model is applied to the neogene Vallès-Penedès half-graben (western Mediterranean, NE Spain) to show the capacity of the program when applied to a realistic geologic situation involving interactions between terrigenous clastics and carbonate sediments.
Resumo:
The critical behavior of a system constituted by molecules with a preferred symmetry axis is studied by means of a Monte Carlo simulation of a simplified two-dimensional model. The system exhibits two phase transitions, associated with the vanishing of the positional order of the center of mass of the molecules and with the orientational order of the symmetry axis. The evolution of the order parameters and the specific heat is also studied. The transition associated with the positional degrees of freedom is found to change from a second-order to a first-order behavior when the two phase transitions are close enough, due to the coupling with the orientational degrees of freedom. This fact is qualitatively compared with similar results found in pure liquid crystals and liquid-crystal mixtures.
Resumo:
Systematic trends in the properties of a linear split-gate heterojunction are studied by solving iteratively the Poisson and Schrödinger equations for different gate potentials and temperatures. A two-dimensional approximation is presented that is much simpler in the numerical implementation and that accurately reproduces all significant trends. In deriving this approximation, we provide a rigorous and quantitative basis for the formulation of models that assumes a two-dimensional character for the electron gas at the junction.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.
Resumo:
Recent measurements of electron escape from a nonequilibrium charged quantum dot are interpreted within a two-dimensional (2D) separable model. The confining potential is derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found that the sequence of decay lifetimes provides a sensitive test of the confining potential and its dependence on electron occupation
Resumo:
We present a numerical study of classical particles diffusing on a solid surface. The particles motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.