63 resultados para Time-dependent data


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spatiotemporal chaos is predicted to occur in n-doped semiconductor superlattices with sequential resonant tunneling as their main charge transport mechanism. Under dc voltage bias, undamped time-dependent oscillations of the current (due to the motion and recycling of electric field domain walls) have been observed in recent experiments. Chaos is the result of forcing this natural oscillation by means of an appropriate external microwave signal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A general method for instantaneous and time-dependent serviceability analysis of plane concrete frames is presented. The methodology is based in an extension of the classic matrix formulation for bars. The main aspects influencing the behaviour of the structural concrete are considered: cracking, creep, shrinkage or prestress losses. To simulate the effect of cracking a smeared model (developed in Part II) based on the modification of the tensile branch of the concrete stress-strain relationship is adopted. The general approach considered permits the application to different materials and constitutive laws. Sequential construction (sectional and structural), incorporation of reinforcement, consideration of the loads history; placing and removing shores, and restraining or releasing in boundary conditions are considered. Some examples are included to highlight the capabilities of the model

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The set of initial conditions for which the pseudoclassical evolution algorithm (and minimality conservation) is verified for Hamiltonians of degrees N (N>2) is explicitly determined through a class of restrictions for the corresponding classical trajectories, and it is proved to be at most denumerable. Thus these algorithms are verified if and only if the system is quadratic except for a set of measure zero. The possibility of time-dependent a-equivalence classes is studied and its physical interpretation is presented. The implied equivalence of the pseudoclassical and Ehrenfest algorithms and their relationship with minimality conservation is discussed in detail. Also, the explicit derivation of the general unitary operator which linearly transforms minimum-uncertainty states leads to the derivation, among others, of operators with a general geometrical interpretation in phase space, such as rotations (parity, Fourier).