84 resultados para Pruning operators
Resumo:
We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.
Resumo:
We estimate the attainable limits on the coupling of a nonstandard Higgs boson to two photons taking into account the data collected by the Fermilab collaborations on diphoton events. We based our analysis on a general set of dimension-6 effective operators that give rise to anomalous couplings in the bosonic sector of the standard model. If the coefficients of all blind operators have the same magnitude, indirect bounds on the anomalous triple vector-boson couplings can also be inferred, provided there is no large cancellation in the Higgs-gamma-gamma coupling.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2)UY(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
For a dynamical system defined by a singular Lagrangian, canonical Noether symmetries are characterized in terms of their commutation relations with the evolution operators of Lagrangian and Hamiltonian formalisms. Separate characterizations are given in phase space, in velocity space, and through an evolution operator that links both spaces. 2000 American Institute of Physics.
Resumo:
In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.
Resumo:
We study the most general unitary transformation that transform the Hamiltonians of particles of spins 0, 1/2 or 1, into Hamiltonians containing even or odd matrices only. We present also the expressions for the position operators for each transformation that are valid for the three kinds of particles mentioned above.
Resumo:
In this paper we consider a general action principle for mechanics written by means of the elements of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write the action principle. By means of such an action principle we work out the equations of motion and a technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction picture. Classical or quantum mechanics come out as particular cases when we make realizations of the Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on we develop in particular the applications of the action principle to classical and quantum mechanics, seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same footing as in quantum mechanics.
Resumo:
We characterize the Schatten class membership of the canonical solution operator to $\overline{\partial}$ acting on $L^2(e^{-2\phi})$, where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. The obtained characterization is in terms of $\Delta\phi$. As part of our approach, we study Hankel operators with anti-analytic symbols acting on the corresponding Fock space of entire functions in $L^2(e^{-2\phi})$
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Resumo:
A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.
Resumo:
Les comarques del Segrià i les Garrigues disposen d’un elevat potencial energètic de la biomassa procedent del residu de poda de l’olivera. No obstant, aquesta biomassa agrícola no s’està valoritzant energèticament a la zona. Per tal d’aprofitar aquest recurs és necessari realitzar un estudi de viabilitat econòmica i ambiental per conèixer quines podrien ser les diferents alternatives per a l’aprofitament energètic, així com, conèixer com s’hauria de gestionar el residu per tal que esdevingués un recurs energètic disponible.
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
We present the induced generalized ordered weighted averaging (IGOWA) operator. It is a new aggregation operator that generalizes the OWA operator by using the main characteristics of two well known aggregation operators: the generalized OWA and the induced OWA operator. Then, this operator uses generalized means and order inducing variables in the reordering process. With this formulation, we get a wide range of aggregation operators that include all the particular cases of the IOWA and the GOWA operator, and a lot of other cases such as the induced ordered weighted geometric (IOWG) operator and the induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. Finally, we also develop a numerical example of the new approach in a financial decision making problem.