79 resultados para Metropolis Monte Carlo simulations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generalization from single-case designs can be achieved by means of replicating individual studies across different experimental units and settings. When replications are available, their findings can be summarized using effect size measurements and integrated through meta-analyses. Several procedures are available for quantifying the magnitude of treatment"s effect in N = 1 designs and some of them are studied in the current paper. Monte Carlo simulations were employed to generate different data patterns (trend, level change, slope change). The experimental conditions simulated were defined by the degrees of serial dependence and phases" length. Out of all the effect size indices studied, the Percent of nonoverlapping data and standardized mean difference proved to be less affected by autocorrelation and perform better for shorter data series. The regression-based procedures proposed specifically for single-case designs did not differentiate between data patterns as well as simpler indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo simulations were used to generate data for ABAB designs of different lengths. The points of change in phase are randomly determined before gathering behaviour measurements, which allows the use of a randomization test as an analytic technique. Data simulation and analysis can be based either on data-division-specific or on common distributions. Following one method or another affects the results obtained after the randomization test has been applied. Therefore, the goal of the study was to examine these effects in more detail. The discrepancies in these approaches are obvious when data with zero treatment effect are considered and such approaches have implications for statistical power studies. Data-division-specific distributions provide more detailed information about the performance of the statistical technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic learning processes for a specific feature detector are studied. This technique is applied to nonsmooth multilayer neural networks requested to perform a discrimination task of order 3 based on the ssT-block¿ssC-block problem. Our system proves to be capable of achieving perfect generalization, after presenting finite numbers of examples, by undergoing a phase transition. The corresponding annealed theory, which involves the Ising model under external field, shows good agreement with Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we model the multicointegration relation, allowing for one structural break. Since multicointegration is a particular case of polynomial or I(2) cointegration, our proposal can also be applied in these cases. The paper proposes the use of a residualbased Dickey-Fuller class of statistic that accounts for one known or unknown structural break. Finite sample performance of the proposed statistic is investigated by using Monte Carlo simulations, which reveals that the statistic shows good properties in terms of empirical size and power. We complete the study with an empirical application of the sustainability of the US external deficit. Contrary to existing evidence, the consideration of one structural break leads to conclude in favour of the sustainability of the US external deficit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical model for the noise properties of Schottky barrier diodes in the framework of the thermionic-emission¿diffusion theory is presented. The theory incorporates both the noise inducedby the diffusion of carriers through the semiconductor and the noise induced by the thermionicemission of carriers across the metal¿semiconductor interface. Closed analytical formulas arederived for the junction resistance, series resistance, and contributions to the net noise localized indifferent space regions of the diode, all valid in the whole range of applied biases. An additionalcontribution to the voltage-noise spectral density is identified, whose origin may be traced back tothe cross correlation between the voltage-noise sources associated with the junction resistance andthose for the series resistance. It is argued that an inclusion of the cross-correlation term as a newelement in the existing equivalent circuit models of Schottky diodes could explain the discrepanciesbetween these models and experimental measurements or Monte Carlo simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.