67 resultados para Mathematical Techniques - Integration
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
Several eco-toxicological studies have shown that insectivorous mammals, due to theirfeeding habits, easily accumulate high amounts of pollutants in relation to other mammal species. To assess the bio-accumulation levels of toxic metals and their in°uenceon essential metals, we quantified the concentration of 19 elements (Ca, K, Fe, B, P,S, Na, Al, Zn, Ba, Rb, Sr, Cu, Mn, Hg, Cd, Mo, Cr and Pb) in bones of 105 greaterwhite-toothed shrews (Crocidura russula) from a polluted (Ebro Delta) and a control(Medas Islands) area. Since chemical contents of a bio-indicator are mainly compositional data, conventional statistical analyses currently used in eco-toxicology can givemisleading results. Therefore, to improve the interpretation of the data obtained, weused statistical techniques for compositional data analysis to define groups of metalsand to evaluate the relationships between them, from an inter-population viewpoint.Hypothesis testing on the adequate balance-coordinates allow us to confirm intuitionbased hypothesis and some previous results. The main statistical goal was to test equalmeans of balance-coordinates for the two defined populations. After checking normality,one-way ANOVA or Mann-Whitney tests were carried out for the inter-group balances
Resumo:
The chemical composition of sediments and rocks, as well as their distribution at theMartian surface, represent a long term archive of processes, which have formed theplanetary surface. A survey of chemical compositions by means of Compositional DataAnalysis represents a valuable tool to extract direct evidence for weathering processesand allows to quantify weathering and sedimentation rates. clr-biplot techniques areapplied for visualization of chemical relationships across the surface (“chemical maps”).The variability among individual suites of data is further analyzed by means of clr-PCA,in order to extract chemical alteration vectors between fresh rocks and their crusts andfor an assessment of different source reservoirs accessible to soil formation. Bothtechniques are applied to elucidate the influence of remote weathering by combinedanalysis of several soil forming branches. Vector analysis in the Simplex provides theopportunity to study atmosphere surface interactions, including the role andcomposition of volcanic gases
Resumo:
Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis
Resumo:
There is almost not a case in exploration geology, where the studied data doesn’tincludes below detection limits and/or zero values, and since most of the geological dataresponds to lognormal distributions, these “zero data” represent a mathematicalchallenge for the interpretation.We need to start by recognizing that there are zero values in geology. For example theamount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-existswith nepheline. Another common essential zero is a North azimuth, however we canalways change that zero for the value of 360°. These are known as “Essential zeros”, butwhat can we do with “Rounded zeros” that are the result of below the detection limit ofthe equipment?Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimeswe need to differentiate between a sodic and a potassic alteration. Pre-classification intogroups requires a good knowledge of the distribution of the data and the geochemicalcharacteristics of the groups which is not always available. Considering the zero valuesequal to the limit of detection of the used equipment will generate spuriousdistributions, especially in ternary diagrams. Same situation will occur if we replace thezero values by a small amount using non-parametric or parametric techniques(imputation).The method that we are proposing takes into consideration the well known relationshipsbetween some elements. For example, in copper porphyry deposits, there is always agood direct correlation between the copper values and the molybdenum ones, but whilecopper will always be above the limit of detection, many of the molybdenum values willbe “rounded zeros”. So, we will take the lower quartile of the real molybdenum valuesand establish a regression equation with copper, and then we will estimate the“rounded” zero values of molybdenum by their corresponding copper values.The method could be applied to any type of data, provided we establish first theircorrelation dependency.One of the main advantages of this method is that we do not obtain a fixed value for the“rounded zeros”, but one that depends on the value of the other variable.Key words: compositional data analysis, treatment of zeros, essential zeros, roundedzeros, correlation dependency
Resumo:
Globalization involves several facility location problems that need to be handled at large scale. Location Allocation (LA) is a combinatorial problem in which the distance among points in the data space matter. Precisely, taking advantage of the distance property of the domain we exploit the capability of clustering techniques to partition the data space in order to convert an initial large LA problem into several simpler LA problems. Particularly, our motivation problem involves a huge geographical area that can be partitioned under overall conditions. We present different types of clustering techniques and then we perform a cluster analysis over our dataset in order to partition it. After that, we solve the LA problem applying simulated annealing algorithm to the clustered and non-clustered data in order to work out how profitable is the clustering and which of the presented methods is the most suitable
Resumo:
This paper presents a pattern recognition method focused on paintings images. The purpose is construct a system able to recognize authors or art styles based on common elements of his work (here called patterns). The method is based on comparing images that contain the same or similar patterns. It uses different computer vision techniques, like SIFT and SURF, to describe the patterns in descriptors, K-Means to classify and simplify these descriptors, and RANSAC to determine and detect good results. The method are good to find patterns of known images but not so good if they are not.