82 resultados para Finite Automata
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.
Resumo:
We argue that low-temperature effects in QED can, if anywhere, only be quantitatively interesting for bound electrons. Unluckily the dominant thermal contribution turns out to be level independent, so that it does not affect the frequency of the transition radiation.
Resumo:
We revisit the analytical properties of the static quasi-photon polarizability function for an electron gas at finite temperature, in connection with the existence of Friedel oscillations in the potential created by an impurity. In contrast with the zero temperature case, where the polarizability is an analytical function, except for the two branch cuts which are responsible for Friedel oscillations, at finite temperature the corresponding function is non analytical, in spite of becoming continuous everywhere on the complex plane. This effect produces, as a result, the survival of the oscillatory behavior of the potential. We calculate the potential at large distances, and relate the calculation to the non-analytical properties of the polarizability.
Resumo:
This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constantdiscounting are analyzed. Special attention is paid to the case of free terminal time. Strotz¿s model (an eating cake problem of a nonrenewable resource with non-constant discounting) is revisited.
Resumo:
We provide a description of the interpolating and sampling sequences on a space of holomorphic functions on a finite Riemann surface, where a uniform growth restriction is imposed on the holomorphic functions.
Resumo:
In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.
Resumo:
In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.
Resumo:
RESUMEN: El objetivo de este trabajo es calcular el importe de la prima pura periódica que debe cobrar el reasegurador a la cedente en un reaseguro finite risk en ambiente financiero estocástico. El problema de la convolución de las diferentes variables aleatorias que intervienen en el cálculo de la prima lo hemos solucionado simulando, por Monte-Carlo, trayectorias de siniestralidad para el reasegurador aplicando posteriormente, en cada trayectoria simulada, los criterios de decisión financieros, esperanza, varianza y desviación. En los criterios de la varianza y de la desviación proponemos utilizar una ecuación de recurrencia estocástica para evitar el problema de la dependencia que existe entre los factores de capitalización estocásticos, obteniendo la prima de reaseguro en función del nivel de aversión al riesgo del reasegurador y de la volatilidad del tipo de interés. Palabras clave: Finite risk, ambiente estocástico, ecuación de recurrencia, simulación de Monte-Carlo, prima pura periódica.
Resumo:
We investigate the dynamics of a F=1 spinor Bose-Einstein condensate of 87Rb atoms confined in a quasi-one-dimensional trap both at zero and at finite temperature. At zero temperature, we observe coherent oscillations between populations of the various spin components and the formation of multiple domains in the condensate. We study also finite temperature effects in the spin dynamics taking into account the phase fluctuations in the Bogoliubov-de Gennes framework. At finite T, despite complex multidomain formation in the condensate, population equipartition occurs. The length scale of these spin domains seems to be determined intrinsically by nonlinear interactions.
Resumo:
One of the characteristics of the finite risk reinsurance is the existence of an found of experience, which is constituted by the premiums charged by the reinsurer, together with his financial incomes, and his objective is to finance the claims to be satisfied to the insurer in the specified period. The objective of this work is to design a model that allows us to determinate the reserve that the found of experience should have in every annual period in order to guarantee its dynamic solvency, taking into the experience of the claims of the reinsurer"s portfolio and of each insurance company.
Resumo:
This paper introduces a mixture model based on the beta distribution, without preestablishedmeans and variances, to analyze a large set of Beauty-Contest data obtainedfrom diverse groups of experiments (Bosch-Domenech et al. 2002). This model gives a bettert of the experimental data, and more precision to the hypothesis that a large proportionof individuals follow a common pattern of reasoning, described as iterated best reply (degenerate),than mixture models based on the normal distribution. The analysis shows thatthe means of the distributions across the groups of experiments are pretty stable, while theproportions of choices at dierent levels of reasoning vary across groups.
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.