93 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision
Resumo:
El grup de visió per computadora de la Universitat de Girona, disposava d’un manipulador lineal com a sistema de posicionament, per poder inspeccionar mitjançant visió artificial, la superfície de diverses peces. El control es realitzava a partir d’un PLC, controlant la posició de la plataforma de posicionament a partir d’un servomotor, un servocontrolador i una targeta d’entrada i sortida de polsos. Es pretén la recuperació d’aquest sistema de posicionament lineal a partir de la recopilació de la informació inicial. El nou ús serà enfocat al posicionament i a la classificació de diversos elements. D’aquesta forma es podrà estudiar el funcionament d’un servomotor governat per un servodriver i una targeta d’entrada i sortida de polsos i s’utilitzarà com a element didàctic per a la universitat. Es complementarà la documentació disponible i s’elaborarà informació tècnica
Resumo:
The classification of Art painting images is a computer vision applications that isgrowing considerably. The goal of this technology, is to classify an art paintingimage automatically, in terms of artistic style, technique used, or its author. For thispurpose, the image is analyzed extracting some visual features. Many articlesrelated with these problems have been issued, but in general the proposed solutionsare focused in a very specific field. In particular, algorithms are tested using imagesat different resolutions, acquired under different illumination conditions. Thatmakes complicate the performance comparison of the different methods. In thiscontext, it will be very interesting to construct a public art image database, in orderto compare all the existing algorithms under the same conditions. This paperpresents a large art image database, with their corresponding labels according to thefollowing characteristics: title, author, style and technique. Furthermore, a tool thatmanages this database have been developed, and it can be used to extract differentvisual features for any selected image. This data can be exported to a file in CSVformat, allowing researchers to analyze the data with other tools. During the datacollection, the tool stores the elapsed time in the calculation. Thus, this tool alsoallows to compare the efficiency, in computation time, of different mathematicalprocedures for extracting image data.
Resumo:
Collaborative activities, in which students actively interact with each other, have proved to provide significant learning benefits. In Computer-Supported Collaborative Learning (CSCL), these collaborative activities are assisted by technologies. However, the use of computers does not guarantee collaboration, as free collaboration does not necessary lead to fruitful learning. Therefore, practitioners need to design CSCL scripts that structure the collaborative settings so that they promote learning. However, not all teachers have the technical and pedagogical background needed to design such scripts. With the aim of assisting teachers in designing effective CSCL scripts, we propose a model to support the selection of reusable good practices (formulated as patterns) so that they can be used as a starting point for their own designs. This model is based on a pattern ontology that computationally represents the knowledge captured on a pattern language for the design of CSCL scripts. A preliminary evaluation of the proposed approach is provided with two examples based on a set of meaningful interrelated patters computationally represented with the pattern ontology, and a paper prototyping experience carried out with two teaches. The results offer interesting insights towards the implementation of the pattern ontology in software tools.
Resumo:
Mitjançant les tècniques de visió per computador aquest projecte pretén desenvolupar una aplicació capaç de segmentar la pell, detectar nevus (pigues i altres taques) i poder comparar imatges de pacients amb risc de contreure melanoma preses en moments diferents. Aquest projecte pretén oferir diferents eines informàtiques als dermatòlegs per a propòsits relacionats amb la investigació. L’ objectiu principal d’ aquest projecte és desenvolupar un sistema informàtic que proporcioni als dermatòlegs agilitat a l’hora de gestionar les dades dels pacients amb les sevesimatges corresponents, ajudar-los en la realització de deteccions dels nevus d’aquestes imatges, i ajudar-los en la comparació d’exploracions (amb les deteccions realitzades)de diferents èpoques d’un mateix pacient
Resumo:
L’objectiu d’aquest PFC és estudiar la branca de la detecció d’objectes en vídeos segons el seu moviment. Per fer-ho es crearà un algorisme que sigui capaç de tractar un vídeo, calculant el nombre d’objectes de l’escena i quina és la posició de cada un d’aquests. L’algorisme ha de ser capaç de trobar un conjunt de regions útils i a partir d’aquest, separar-lo en diferents grups, cada un representant un objecte en moviment. La finalitat d’aquest projecte és l’estudi de la detecció d’objectes en vídeo. Intentarem crear un algorisme que ens permeti dur a terme aquest estudi i treure’n conclusions. Pretenem fer un algorisme, o un conjunt d’algorismes, en Matlab que sigui capaç de donat qualsevol vídeo, pugui retornar un conjunt de imatges, o un vídeo, amb els diferents objectes de l’escena destacats. Es faran proves en diferents situacions, des de objectes sintètics amb un moviment clarament definit, fins a proves en seqüències reals extretes de diferents pel•lícules. Per últim es pretén comprovar l’eficiència d’aquest. Ja que el projecte s’emmarca en la línia de recerca de robòtica i visió per computador, la tasca principal serà la manipulació d’imatges. Per tant farem servir el Matlab, ja que les imatges no son res més que matrius i aquest programa permet el càlcul vectorial i matricial d’una manera senzilla i realment eficient
Estudi i implementació d’un mètode de reconstrucció 3D basat en SfM i registre de vistes 3D parcials
Resumo:
Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur
Resumo:
Els objectius del projecte són: realitzar un intèrpret de comandes en VAL3 que rebi les ordres a través d’una connexió TCP/IP; realitzar una toolbox de Matlab per enviar diferents ordres mitjançant una connexió TCP/IP; adquirir i processar mitjançant Matlab imatges de la càmera en temps real i detectar la posició d’objectes artificials mitjançant la segmentació per color i dissenyar i realitzar una aplicació amb Matlab que reculli peces detectades amb la càmera. L’abast del projecte inclou: l’estudi del llenguatge de programació VAL3 i disseny de l’ intèrpret de comandes, l’estudi de les llibreries de Matlab per comunicació mitjançant TCP/IP, per l’adquisició d’imatges, pel processament d’imatges i per la programació en C; el disseny de la aplicació recol·lectora de peces i la implementació de: un intèrpret de comandes en VAL3, la toolbox pel control del robot STAUBLI en Matlab i la aplicació recol·lectora de peces mitjançant el processament d’imatges en temps real també en Matlab
Resumo:
Projective homography sits at the heart of many problems in image registration. In addition to many methods for estimating the homography parameters (R.I. Hartley and A. Zisserman, 2000), analytical expressions to assess the accuracy of the transformation parameters have been proposed (A. Criminisi et al., 1999). We show that these expressions provide less accurate bounds than those based on the earlier results of Weng et al. (1989). The discrepancy becomes more critical in applications involving the integration of frame-to-frame homographies and their uncertainties, as in the reconstruction of terrain mosaics and the camera trajectory from flyover imagery. We demonstrate these issues through selected examples
Resumo:
We present a georeferenced photomosaic of the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge, 37°18’N). The photomosaic was generated from digital photographs acquired using the ARGO II seafloor imaging system during the 1996 LUSTRE cruise, which surveyed a ~1 km2 zone and provided a coverage of ~20% of the seafloor. The photomosaic has a pixel resolution of 15 mm and encloses the areas with known active hydrothermal venting. The final mosaic is generated after an optimization that includes the automatic detection of the same benthic features across different images (feature-matching), followed by a global alignment of images based on the vehicle navigation. We also provide software to construct mosaics from large sets of images for which georeferencing information exists (location, attitude, and altitude per image), to visualize them, and to extract data. Georeferencing information can be provided by the raw navigation data (collected during the survey) or result from the optimization obtained from imatge matching. Mosaics based solely on navigation can be readily generated by any user but the optimization and global alignment of the mosaic requires a case-by-case approach for which no universally software is available. The Lucky Strike photomosaics (optimized and navigated-only) are publicly available through the Marine Geoscience Data System (MGDS, http://www.marine-geo.org). The mosaic-generating and viewing software is available through the Computer Vision and Robotics Group Web page at the University of Girona (http://eia.udg.es/_rafa/mosaicviewer.html)
Resumo:
In this paper, we present a method to deal with the constraints of the underwater medium for finding changes between sequences of underwater images. One of the main problems of underwater medium for automatically detecting changes is the low altitude of the camera when taking pictures. This emphasise the parallax effect between the images as they are not taken exactly at the same position. In order to solve this problem, we are geometrically registering the images together taking into account the relief of the scene
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
La segmentació de persones es molt difícil a causa de la variabilitat de les diferents condicions, com la postura que aquestes adoptin, color del fons, etc. Per realitzar aquesta segmentació existeixen diferents tècniques, que a partir d'una imatge ens retornen un etiquetat indicant els diferents objectes presents a la imatge. El propòsit d'aquest projecte és realitzar una comparativa de les tècniques recents que permeten fer segmentació multietiqueta i que son semiautomàtiques, en termes de segmentació de persones. A partir d'un etiquetatge inicial idèntic per a tots els mètodes utilitzats, s'ha realitzat una anàlisi d'aquests, avaluant els seus resultats sobre unes dades publiques, analitzant 2 punts: el nivell de interacció i l'eficiència.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.