115 resultados para Classificació AMS::93 Systems Theory


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We extend the HamiltonJacobi formulation to constrained dynamical systems. The discussion covers both the case of first-class constraints alone and that of first- and second-class constraints combined. The HamiltonDirac equations are recovered as characteristic of the system of partial differential equations satisfied by the HamiltonJacobi function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I, we formulate and examine some systems that have arisen in the study of the constructible hierarchy; we find numerous transitive models for them, among which are supertransitive models containing all ordinals that show that Devlin's system BS lies strictly between Gandy's systems PZ and BST'; and we use our models to show that BS fails to handle even the simplest rudimentary functions, and is thus inadequate for the use intended for it in Devlin's treatise. In Part II we propose and study an enhancement of the underlying logic of these systems, build further models to show where the previous hierarchy of systems is preserved by our enhancement; and consider three systems that might serve for Devlin's purposes: one the enhancement of a version of BS, one a formulation of Gandy-Jensen set theory, and the third a subsystem common to those two. In Part III we give new proofs of results of Boffa by constructing three models in which, respectively, TCo, AxPair and AxSing fail; we give some sufficient conditions for a set not to belong to the rudimentary closure of another set, and thus answer a question of McAloon; and we comment on Gandy's numerals and correct and sharpen other of his observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend Floquet theory for reducing nonlinear periodic difference systems to autonomous ones (actually linear) by using normal form theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To a finite graph there corresponds a free partially commutative group: with the given graph as commutation graph. In this paper we construct an orthogonality theory for graphs and their corresponding free partially commutative groups. The theory developed here provides tools for the study of the structure of partially commutative groups, their universal theory and automorphism groups. In particular the theory is applied in this paper to the centraliser lattice of such groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present existence, uniqueness and continuous dependence results for some kinetic equations motivated by models for the collective behavior of large groups of individuals. Models of this kind have been recently proposed to study the behavior of large groups of animals, such as flocks of birds, swarms, or schools of fish. Our aim is to give a well-posedness theory for general models which possibly include a variety of effects: an interaction through a potential, such as a short-range repulsion and long-range attraction; a velocity-averaging effect where individuals try to adapt their own velocity to that of other individuals in their surroundings; and self-propulsion effects, which take into account effects on one individual that are independent of the others. We develop our theory in a space of measures, using mass transportation distances. As consequences of our theory we show also the convergence of particle systems to their corresponding kinetic equations, and the local-in-time convergence to the hydrodynamic limit for one of the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fault location has been studied deeply for transmission lines due to its importance in power systems. Nowadays the problem of fault location on distribution systems is receiving special attention mainly because of the power quality regulations. In this context, this paper presents an application software developed in Matlabtrade that automatically calculates the location of a fault in a distribution power system, starting from voltages and currents measured at the line terminal and the model of the distribution power system data. The application is based on a N-ary tree structure, which is suitable to be used in this application due to the highly branched and the non- homogeneity nature of the distribution systems, and has been developed for single-phase, two-phase, two-phase-to-ground, and three-phase faults. The implemented application is tested by using fault data in a real electrical distribution power system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolution of compositions in time, space, temperature or other covariates is frequentin practice. For instance, the radioactive decomposition of a sample changes its composition with time. Some of the involved isotopes decompose into other isotopes of thesample, thus producing a transfer of mass from some components to other ones, butpreserving the total mass present in the system. This evolution is traditionally modelledas a system of ordinary di erential equations of the mass of each component. However,this kind of evolution can be decomposed into a compositional change, expressed interms of simplicial derivatives, and a mass evolution (constant in this example). A rst result is that the simplicial system of di erential equations is non-linear, despiteof some subcompositions behaving linearly.The goal is to study the characteristics of such simplicial systems of di erential equa-tions such as linearity and stability. This is performed extracting the compositional differential equations from the mass equations. Then, simplicial derivatives are expressedin coordinates of the simplex, thus reducing the problem to the standard theory ofsystems of di erential equations, including stability. The characterisation of stabilityof these non-linear systems relays on the linearisation of the system of di erential equations at the stationary point, if any. The eigenvelues of the linearised matrix and theassociated behaviour of the orbits are the main tools. For a three component system,these orbits can be plotted both in coordinates of the simplex or in a ternary diagram.A characterisation of processes with transfer of mass in closed systems in terms of stability is thus concluded. Two examples are presented for illustration, one of them is aradioactive decay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A radiative equation of the Cattaneo–Vernotte type is derived from information theory and the radiative transfer equation. The equation thus derived is a radiative analog of the equation that is used for the description of hyperbolic heat conduction. It is shown, without recourse to any phenomenological assumption, that radiative transfer may be included in a natural way in the framework of extendedirreversible thermodynamics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minkowski's ?(x) function can be seen as the confrontation of two number systems: regular continued fractions and the alternated dyadic system. This way of looking at it permits us to prove that its derivative, as it also happens for many other non-decreasing singular functions from [0,1] to [0,1], when it exists can only attain two values: zero and infinity. It is also proved that if the average of the partial quotients in the continued fraction expansion of x is greater than k* =5.31972, and ?'(x) exists then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(F), where F is the golden ratio, then ?'(x)=infinity. Finally some results are presented concerning metric properties of continued fraction and alternated dyadic expansions.