52 resultados para visible pedagogies


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este artículo se estudia la síntesis de nanocristales semiconductores elementales y compuestos elaborados por implantación iónica en SiO2. En el caso de los nanocristales de Si, se ha desarrollado un estudio sistemático que correlaciona las características de los precipitados y sus propiedades de luminiscencia. Nanopartículas de Ge, que presentan menor emisión pero mayor contraste en Microscopía Electrónica de Transmisión, han sido fabricadas para desarrollar un nuevo método de medida de la densidad de nanocristales en matrices amorfas. Por otro lado, nanopartículas de ZnS dopadas con Mn han sido elaboradas por primera vez con esta técnica, observando la emisión de un pico de luminescencia característico de una transición intra-Mn. Finalmente, se presentan los primeros resultados ópticos de capas coimplantadas con Si+ y C+, que muestran la presencia de tres picos intensos de luminescencia en las regiones roja, verde y azul del espectro visible, que ha sido relacionada con la presencia de diferentes tipos de nanopartículas. Cabe destacar que la emisión simultánea de los tres picos ha permitido la observación de una intensa emisión de luz blanca.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arrays of vertically aligned ZnO:Cl/ZnO core-shell nanowires were used to demonstrate that the control of the coaxial doping profile in homojunction nanostructures can improve their surface charge carrier transfer while conserving potentially excellent transport properties. It is experimentally shown that the presence of a ZnO shell enhances the photoelectrochemical properties of ZnO:Cl nanowires up to a factor 5. Likewise, the ZnO shell promotes the visible photoluminescence band in highly conducting ZnO:Cl nanowires. These lines of evidence are associated with the increase of the nanowires" surface depletion layer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon nanocrystals (Si-nc) is an enabling material for silicon photonics, which is no longer an emerging field of research but an available technology with the first commercial products available on the market. In this paper, properties and applications of Si-nc in silicon photonics are reviewed. After a brief history of silicon photonics, the limitations of silicon as a light emitter are discussed and the strategies to overcome them are briefly treated, with particular attention to the recent achievements. Emphasis is given to the visible optical gain properties of Si-nc and to its sensitization effect on Er ions to achieve infrared light amplification. The state of the art of Si-nc applied in a few photonic components is reviewed and discussed. The possibility to exploit Si-nc for solar cells is also presented. in addition, nonlinear optical effects, which enable fast all-optical switches, are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a spectroscopic study about the energy transfer mechanism among silicon nanoparticles (Si-np), both amorphous and crystalline, and Er ions in a silicon dioxide matrix. From infrared spectroscopic analysis, we have determined that the physics of the transfer mechanism does not depend on the Si-np nature, finding a fast (< 200 ns) energy transfer in both cases, while the amorphous nanoclusters reveal a larger transfer efficiency than the nanocrystals. Moreover, the detailed spectroscopic results in the visible range here reported are essential to understand the physics behind the sensitization effect, whose knowledge assumes a crucial role to enhance the transfer rate and possibly employing the material in optical amplifier devices. Joining the experimental data, performed with pulsed and continuous-wave excitation, we develop a model in which the internal intraband recombination within Si-np is competitive with the transfer process via an Auger electron"recycling" effect. Posing a different light on some detrimental mechanism such as Auger processes, our findings clearly recast the role of Si-np in the sensitization scheme, where they are able to excite very efficiently ions in close proximity to their surface. (C) 2010 American Institute of Physics.