112 resultados para multiscale entropy
Resumo:
Weak solutions of the spatially inhomogeneous (diffusive) Aizenmann-Bak model of coagulation-breakup within a bounded domain with homogeneous Neumann boundary conditions are shown to converge, in the fast reaction limit, towards local equilibria determined by their mass. Moreover, this mass is the solution of a nonlinear diffusion equation whose nonlinearity depends on the (size-dependent) diffusion coefficient. Initial data are assumed to have integrable zero order moment and square integrable first order moment in size, and finite entropy. In contrast to our previous result [CDF2], we are able to show the convergence without assuming uniform bounds from above and below on the number density of clusters.
Resumo:
We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model.
Resumo:
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Resumo:
Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.
Resumo:
Donada una aplicació racional en una varietat complexa, Bellon i Viallet van definit l’entropia algebraica d’aquesta aplicació i van provar que aquest valor és un invariant biracional. Un invariant biracional equivalent és el grau asimptòtic, grau dinàmic o complexitat, definit per Boukraa i Maillard. Aquesta noció és propera a la complexitat definida per Arnold. Conjecturalment, el grau asimptòtic satisfà una recurrència lineal amb coeficients enters. Aquesta conjectura ha estat provada en el cas polinòmic en el pla afí complex per Favre i Jonsson i resta oberta en per al cas projectiu global i per al cas local. L’estudi de l’arbre valoratiu de Favre i Jonsson ha resultat clau per resoldre la conjectura en el cas polinòmic en el pla afí complex. El beneficiari ha estudiat l’arbre valoratiu global de Favre i Jonsson i ha reinterpretat algunes nocions i resultats des d’un punt de vista més geomètric. Així mateix, ha estudiat la demostració de la conjectura de Bellon – Viallet en el cas polinòmic en el pla afí complex com a primer pas per trobar una demostració en el cas local i projectiu global en estudis futurs. El projecte inclou un estudi detallat de l'arbre valoratiu global des d'un punt de vista geomètric i els primers passos de la demostració de la conjectura de Bellon - Viallet en el cas polinòmic en el pla afí complex que van efectuar Favre i Jonsson.
Resumo:
This paper explores two major issues, from biophysical and historical viewpoints. We examine land management, which we define as the long-term fertility maintenance of land in relation to agriculture, fishery and forestry. We also explore humans’ positive role as agents aiming to reinforce harmonious materials circulation within the land. Liebig’s view on nature, agriculture and land, emphasizes the maintenance of long-term land fertility based on his agronomical thought that the circulation of matter in agricultural fields must be maintained with manure as much as possible. The thoughts of several classical economists, on nature, agriculture and land are reassessed from Liebig’s view point. Then, the land management problem is discussed at a much more fundamental level, to understand the necessary conditions for life in relation to land management. This point is analyzed in terms of two mechanisms: entropy disposal on the earth, and material circulation against gravitational field. Finally from the historical example of the metropolis of Edo, it is shown that there is yet another necessary condition for the sustainable management of land based on the creation of harmonious material cycles among cities, farm land, forests and surrounding sea areas in which humans play a vital role as agent.
Resumo:
In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.
Resumo:
In several computer graphics areas, a refinement criterion is often needed to decide whether to goon or to stop sampling a signal. When the sampled values are homogeneous enough, we assume thatthey represent the signal fairly well and we do not need further refinement, otherwise more samples arerequired, possibly with adaptive subdivision of the domain. For this purpose, a criterion which is verysensitive to variability is necessary. In this paper, we present a family of discrimination measures, thef-divergences, meeting this requirement. These convex functions have been well studied and successfullyapplied to image processing and several areas of engineering. Two applications to global illuminationare shown: oracles for hierarchical radiosity and criteria for adaptive refinement in ray-tracing. Weobtain significantly better results than with classic criteria, showing that f-divergences are worth furtherinvestigation in computer graphics. Also a discrimination measure based on entropy of the samples forrefinement in ray-tracing is introduced. The recursive decomposition of entropy provides us with a naturalmethod to deal with the adaptive subdivision of the sampling region
Resumo:
Image registration is an important component of image analysis used to align two or more images. In this paper, we present a new framework for image registration based on compression. The basic idea underlying our approach is the conjecture that two images are correctly registered when we can maximally compress one image given the information in the other. The contribution of this paper is twofold. First, we show that the image registration process can be dealt with from the perspective of a compression problem. Second, we demonstrate that the similarity metric, introduced by Li et al., performs well in image registration. Two different versions of the similarity metric have been used: the Kolmogorov version, computed using standard real-world compressors, and the Shannon version, calculated from an estimation of the entropy rate of the images
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
En el marc del conveni de col·laboració entre el Grup de Gràfics de Girona de la Universitat de Girona i el Grup de Neuroradiologia de l’Institut de Diagnòstic per la Imatge de l’Hospital Universitari Dr. Josep Trueta de Girona, es planteja desenvolupar la plataforma StarViewer, una plataforma que incorpori les tècniques bàsiques de visualització científica complementant la visualització 2D tradicional amb una visualització 3D que permeti inspeccionar la informació del pacient de forma més eficient i facilitant-ne el seu diagnòstic. En aquest projecte s’implementen dos tècniques que formaran part de la plataforma StarViewer. El primer objectiu és implementar un mètode per facilitar la visualització i la interpretació de models de vòxels simples i models de vòxels fusionats, i el segon és implementar un mètode basat en mesures de la Teoria de la Informació per ajudar l’usuari a trobar el punt de vista òptim per a un model donat. Per assolir el primer objectiu ens centrarem en la tècnica dels Miralls màgics o Magic Mirrors, que permeten la visualització simultània del model de vòxels des de diferents punts de vista, i per al segon objectiu, en el concepte d’excess entropy, que és una mesura de la informació, per determinar quin punt de vista aporta més informació a l’usuari
Resumo:
Differential scanning calorimetry (DSC) was used to study the dehydrogenation processes that take place in three hydrogenated amorphous silicon materials: nanoparticles, polymorphous silicon, and conventional device-quality amorphous silicon. Comparison of DSC thermograms with evolved gas analysis (EGA) has led to the identification of four dehydrogenation processes arising from polymeric chains (A), SiH groups at the surfaces of internal voids (A'), SiH groups at interfaces (B), and in the bulk (C). All of them are slightly exothermic with enthalpies below 50 meV/H atoms , indicating that, after dissociation of any SiH group, most dangling bonds recombine. The kinetics of the three low-temperature processes [with DSC peak temperatures at around 320 (A),360 (A'), and 430°C (B)] exhibit a kinetic-compensation effect characterized by a linea relationship between the activation entropy and enthalpy, which constitutes their signature. Their Si-H bond-dissociation energies have been determined to be E (Si-H)0=3.14 (A), 3.19 (A'), and 3.28 eV (B). In these cases it was possible to extract the formation energy E(DB) of the dangling bonds that recombine after Si-H bond breaking [0.97 (A), 1.05 (A'), and 1.12 (B)]. It is concluded that E(DB) increases with the degree of confinement and that E(DB)>1.10 eV for the isolated dangling bond in the bulk. After Si-H dissociation and for the low-temperature processes, hydrogen is transported in molecular form and a low relaxation of the silicon network is promoted. This is in contrast to the high-temperature process for which the diffusion of H in atomic form induces a substantial lattice relaxation that, for the conventional amorphous sample, releases energy of around 600 meV per H atom. It is argued that the density of sites in the Si network for H trapping diminishes during atomic diffusion
Resumo:
The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges
Resumo:
Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as τ grows. Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods. We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-behaved, leading to significantly larger step sizes.Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Resumo:
A Carnatic music concert is made up of a sequence of pieces, where each piece corresponds to a particular genre and ra¯aga (melody). Unlike a western music concert, the artist may be applauded intra-performance inter-performance. Most Carnatic music that is archived today correspond to a single audio recordings of entire concerts.The purpose of this paper is to segment single audio recordings into a sequence of pieces using thecharacteristic features of applause and music. Spectral flux, spectral entropy change quite significantly from music to applause and vice-versa. The characteristics of these features for a subset of concerts was studied. A threshold based approach was used to segment the pieces into music fragments and applauses. Preliminary resultson recordings 19 concerts from matched microphones show that the EER is about 17% for a resolution of 0.25 seconds. Further, a parameter called CUSUM is estimatedfor the applause regions. The CUSUM values determine the strength of the applause. The CUSUM is used to characterise the highlights of a concert.