59 resultados para brain synaptosomes
Resumo:
The autophagic process is a lysosomal degradation pathway, which is activated during stress conditions, such as starvation or exercise. Regular exercise has beneficial effects on human health, including neuroprotection. However, the cellular mechanisms underlying these effects are incompletely understood. Endurance and a single bout of exercise induce autophagy not only in brain but also in peripheral tissues. However, little is known whether autophagy could be modulated in brain and peripheral tissues by long-term moderate exercise. Here, we examined the effects on macroautophagy process of long-term moderate treadmill training (36 weeks) in adult rats both in brain (hippocampus and cerebral cortex) and peripheral tissues (skeletal muscle, liver and heart). We assessed mTOR activation and the autophagic proteins Beclin 1, p62, LC3B (LC3B-II/LC3B-I ratio) and the lysosomal protein LAMP1, as well as the ubiquitinated proteins. Our results showed in the cortex of exercised rats an inactivation of mTOR, greater autophagy flux (increased LC3-II/LC3-I ratio and reduced p62) besides increased LAMP1. Related with these effects a reduction in the ubiquitinated proteins was observed. No significant changes in the autophagic pathway were found either in hippocampus or in skeletal and cardiac muscle by exercise. Only in the liver of exercised rats mTOR phosphorylation and p62 levels increased, which could be related with beneficial metabolic effects in this organ induced by exercise. Thus, our findings suggest that long-term moderate exercise induces autophagy specifically in the cortex
Resumo:
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization mechanisms between neuronal assemblies might have a key role during language learning. In particular, studying these dynamics may help uncover whether different oscillatory patterns sustain more item-based learning of words and rule-based learning from speech input. Therefore, we tracked the modulation of oscillatory neural activity during the initial exposure to an artificial language, which contained embedded rules. We analyzed both spectral power variations, as a measure of local neuronal ensemble synchronization, as well as phase coherence patterns, as an index of the long-range coordination of these local groups of neurons. Synchronized activity in the gamma band (2040 Hz), previously reported to be related to the engagement of selective attention, showed a clear dissociation of local power and phase coherence between distant regions. In this frequency range, local synchrony characterized the subjects who were focused on word identification and was accompanied by increased coherence in the theta band (48 Hz). Only those subjects who were able to learn the embedded rules showed increased gamma band phase coherence between frontal, temporal, and parietal regions.
Resumo:
Brain-derived neurotrophic factor (BDNF) has been proposed as a biomarker of schizophrenia and, more specifically, as a biomarker of cognitive recovery. Evidence collected in this review indicates that BDNF is relevant in the pathophysiology of schizophrenia and could play a role as a marker of clinical response. BDNF has been shown to play a positive role as a marker in antipsychotic treatment, and it has been demonstrated that typical antipsychotics decrease BDNF levels while atypical antipsychotics maintain or increase serum BDNF levels. Furthermore, BDNF levels have been associated with severe cognitive impairments in patients with schizophrenia. Consequently, BDNF has been proposed as a candidate target of strategies to aid the cognitive recovery process. There is some evidence suggesting that BDNF could be mediating neurobiological processes underlying cognitive recovery. Thus, serum BDNF levels seem to be involved in some synaptic plasticity and neurotransmission processes. Additionally, serum BDNF levels significantly increased in schizophrenia subjects after neuroplasticity-based cognitive training. If positive replications of those findings are published in the future then serum BDNF levels could be definitely postulated as a peripheral biomarker for the effects of intensive cognitive training or any sort of cognitive recovery in schizophrenia. All in all, the current consideration of BDNF as a biomarker of cognitive recovery in schizophrenia is promising but still premature.
Resumo:
The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.
Resumo:
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.
Resumo:
The microenvironment of the central nervous system is important for neuronal function and development. During the early stages of embryo development the cephalic vesicles are filled by embryonic cerebrospinal fluid, a complex fluid containing different protein fractions, which contributes to the regulation of the survival, proliferation and neurogenesis of neuroectodermal stem cells. The protein content of embryonic cerebrospinal fluid from chick and rat embryos at the start of neurogenesis has already been determined. Most of the identified gene products are thought to be involved in the regulation of developmental processes during embryogenesis. However, due to the crucial roles played by embryonic cerebrospinal fluid during brain development, the embryological origin of the gene products it contains remains an intriguing question. According to the literature most of these products are synthesised in embryonic tissues other than the neuroepithelium. In this study we examined the embryological origin of the most abundant embryonic cerebrospinal fluid protein fractions by means of slot-blot analysis and by using several different embryonic and extraembryonic protein extracts, immunodetected with polyclonal antibodies. This first attempt to elucidate their origin is not based on the proteins identified by proteomic methods, but rather on crude protein fractions detected by SDS-PAGE analysis and to which polyclonal antibodies were specifically generated. Despite some of the limitations of this study, i.e. that one protein fraction may contain more than one gene product, and that a specific gene product may be contained in different protein fractions depending on post-translational modifications, our results show that most of the analysed protein fractions are not produced by the cephalic neuroectoderm but are rather stored in the egg reservoir; furthermore, few are produced by embryo tissues, thus indicating that they must be transported from their production or storage sites to the cephalic cavities, most probably via embryonic serum. These results raise the question as to whether the transfer of proteins from these two embryo compartments is regulated at this early developmental stage.
Resumo:
The ventral striatum / nucleus accumbens has been implicated in the craving for drugs and alcohol which is a major reason for relapse of addicted people. Craving might be induced by drug-related cues. This suggests that disruption of craving-related neural activity in the nucleus accumbens may significantly reduce craving in alcohol-dependent patients. Here we report on preliminary clinical and neurophysiological evidence in three male patients who were treated with high frequency deep brain stimulation of the nucleus accumbens bilaterally. All three had been alcohol dependent for many years, unable to abstain from drinking, and had experienced repeated relapses prior to the stimulation. After the operation, craving was greatly reduced and all three patients were able to abstain from drinking for extended periods of time. Immediately after the operation but prior to connection of the stimulation electrodes to the stimulator, local field potentials were obtained from the externalized cables in two patients while they performed cognitive tasks addressing action monitoring and incentive salience of drug related cues. LFPs in the action monitoring task provided further evidence for a role of the nucleus accumbens in goal-directed behaviors. Importantly, alcohol related cue stimuli in the incentive salience task modulated LFPs even though these cues were presented outside of the attentional focus. This implies that cue-related craving involves the nucleus accumbens and is highly automatic.
Resumo:
The heated debate over whether there is only a single mechanism or two mechanisms for morphology has diverted valuable research energy away from the more critical questions about the neural computations involved in the comprehension and production of morphologically complex forms. Cognitive neuroscience data implicate many brain areas. All extant models, whether they rely on a connectionist network or espouse two mechanisms, are too underspecified to explain why more than a few brain areas differ in their activity during the processing of regular and irregular forms. No one doubts that the brain treats regular and irregular words differently, but brain data indicate that a simplistic account will not do. It is time for us to search for the critical factors free from theoretical blinders.
Resumo:
Controversial results have been reported concerning the neural mechanisms involved in the processing of rewards and punishments. On the one hand, there is evidence suggesting that monetary gains and losses activate a similar fronto-subcortical network. On the other hand, results of recent studies imply that reward and punishment may engage distinct neural mechanisms. Using functional magnetic resonance imaging (fMRI) we investigated both regional and interregional functional connectivity patterns while participants performed a gambling task featuring unexpectedly high monetary gains and losses. Classical univariate statistical analysis showed that monetary gains and losses activated a similar fronto-striatallimbic network, in which main activation peaks were observed bilaterally in the ventral striatum. Functional connectivity analysis showed similar responses for gain and loss conditions in the insular cortex, the amygdala, and the hippocampus that correlated with the activity observed in the seed region ventral striatum, with the connectivity to the amygdala appearing more pronounced after losses. Larger functional connectivity was found to the medial orbitofrontal cortex for negative outcomes. The fact that different functional patterns were obtained with both analyses suggests that the brain activations observed in the classical univariate approach identifi es the involvement of different functional networks in the current task. These results stress the importance of studying functional connectivity in addition to standard fMRI analysis in reward-related studies.
Resumo:
Feedback-related negativity (FRN) is an ERP component that distinguishes positive from negative feedback. FRN has been hypothesized to be the product of an error signal that may be used to adjust future behavior. In addition, associative learning models assume that the trial-to-trial learning of cueoutcome mappings involves the minimization of an error term. This study evaluated whether FRN is a possible electrophysiological correlate of this error term in a predictive learning task where human subjects were asked to learn different cueoutcome relationships. Specifically, we evaluated the sensitivity of the FRN to the course of learning when different stimuli interact or compete to become a predictor of certain outcomes. Importantly, some of these cues were blocked by more informative or predictive cues (i.e., the blocking effect). Interestingly, the present results show that both learning and blocking affect the amplitude of the FRN component. Furthermore, independent analyses of positive and negative feedback event-related signals showed that the learning effect was restricted to the ERP component elicited by positive feedback. The blocking test showed differences in the FRN magnitude between a predictive and a blocked cue. Overall, the present results show that ERPs that are related to feedback processing correspond to the main predictions of associative learning models. ■
Resumo:
An assortment of human behaviors is thought to be driven by rewards including reinforcement learning, novelty processing, learning, decision making, economic choice, incentive motivation, and addiction. In each case the ventral tegmental area/ventral striatum (nucleus accumbens) (VTAVS) system has been implicated as a key structure by functional imaging studies, mostly on the basis of standard, univariate analyses. Here we propose that standard functional magnetic resonance imaging analysis needs to be complemented by methods that take into account the differential connectivity of the VTAVS system in the different behavioral contexts in order to describe reward based processes more appropriately. We fi rst consider the wider network for reward processing as it emerged from animal experimentation. Subsequently, an example for a method to assess functional connectivity is given. Finally, we illustrate the usefulness of such analyses by examples regarding reward valuation, reward expectation and the role of reward in addiction.
Resumo:
Major challenges must be tackled for brain-computer interfaces to mature into an established communications medium for VR applications, which will range from basic neuroscience studies to developing optimal peripherals and mental gamepads and more efficient brain-signal processing techniques.
Resumo:
A brain-computer interface (BCI) is a new communication channel between the human brain and a computer. Applications of BCI systems comprise the restoration of movements, communication and environmental control. In this study experiments were made that used the BCI system to control or to navigate in virtual environments (VE) just by thoughts. BCI experiments for navigation in VR were conducted so far with synchronous BCI and asynchronous BCI systems. The synchronous BCI analyzes the EEG patterns in a predefined time window and has 2 to 3 degrees of freedom.
Resumo:
The role of behavior in evolution remains controversial, despite that some ideas are over 100 years old. Changes in behavior are generally believed to enhance evolution by exposing individuals to new selective pressures and by facilitating range expansions. However, this hypothesis lacks firm empirical evidence. Moreover, behavioral changes can also inhibit evolution by hiding heritable variation from natural selection. Taking advantage of the complete phylogeny of extant birds, a new species-level measure of past diversification rate and the best existing measures of brain size (n = 1326 species), I show here that relative brain size is associated (albeit weakly) with diversification rates. Assuming that brain relative size reflects behavioral flexibility, an assumption well-supported by evidence, this finding supports the idea that behavior can enhance evolutionary diversification. This view is further supported by the discovery that the most important factor influencing diversification rates is ecological generalism, which is believed to require behavioral flexibility. Thus, behavioral changes that expose animals to a variety of environments can have played an important role in the evolution of birds.