49 resultados para Technological physics
Resumo:
Virtual learning environments are online spaces where learners interact with other learners, teachers, resources and the environment in itself. Although technology is meant to enhance the learning process, there are important issues regarding pedagogical and organizational aspects that must be addressed. In this paper we review the barriers detected in a virtual university which exclusively uses Internet as the main channel of communication, with no face-to-face requirements exceptthose related to final evaluation.
Resumo:
The degradation of the catalytic filaments is the main factor limiting the industrial implementation of the hot wire chemical vapor deposition (HWCVD) technique. Up to now, no solution has been found to protect the catalytic filaments used in HWCVD without compromising their catalytic activity. Probably, the definitive solution relies on the automatic replacement of the catalytic filaments. In this work, the results of the validation tests of a new apparatus for the automatic replacement of the catalytic filaments are reported. The functionalities of the different parts have been validated using a 0.2 mm diameter tungsten filament under uc-Si:H deposition conditions.
Resumo:
In this paper we seek to verify the hypothesis that trust and cooperation between individuals, and between them and public institutions, can encourage technological innovation and the adoption of knowledge. Additionally, we test the extent to which the interaction of social capital with human capital and R&D expenditures improve their effect on a region’s ability to innovate. Our empirical evidence is taken from the Spanish regions and employs a knowledge production function and longitudinal count data models. Our results suggest that social capital correlates positively with innovation. Further, our analysis reveals a powerful interaction between human and social capital in the production of knowledge, whilst the complementarity with R&D efforts would seem less clear.
Resumo:
Social, technological, and economic time series are divided by events which are usually assumed to be random, albeit with some hierarchical structure. It is well known that the interevent statistics observed in these contexts differs from the Poissonian profile by being long-tailed distributed with resting and active periods interwoven. Understanding mechanisms generating consistent statistics has therefore become a central issue. The approach we present is taken from the continuous-time random-walk formalism and represents an analytical alternative to models of nontrivial priority that have been recently proposed. Our analysis also goes one step further by looking at the multifractal structure of the interevent times of human decisions. We here analyze the intertransaction time intervals of several financial markets. We observe that empirical data describe a subtle multifractal behavior. Our model explains this structure by taking the pausing-time density in the form of a superstatistics where the integral kernel quantifies the heterogeneous nature of the executed tasks. A stretched exponential kernel provides a multifractal profile valid for a certain limited range. A suggested heuristic analytical profile is capable of covering a broader region.