122 resultados para Statistical thermodynamic properties of micellar dispersions
Resumo:
Nanocrystalline silicon layers have been obtained by thermal annealing of films sputtered in various hydrogen partial pressures. The as-deposited and crystallized films were investigated by infrared, Raman, x-ray diffraction, electron microscopy, and optical absorption techniques. The obtained data show evidence of a close correlation between the microstructure and properties of the processed material, and the hydrogen content in the as-grown deposit. The minimum stress deduced from Raman was found to correspond to the widest band gap and to a maximum hydrogen content in the basic unannealed sample. Such a structure relaxation seems to originate from the so-called "chemical annealing" thought to be due to Si-H2 species, as identified by infrared spectroscopy. The variation of the band gap has been interpreted in terms of the changes in the band tails associated with the disorder which would be induced by stress. Finally, the layers originally deposited with the highest hydrogen pressure show a lowest stress-which does not correlate with the hydrogen content and the optical band gap¿and some texturing. These features are likely related to the presence in these layers of a significant crystalline fraction already before annealing.
Resumo:
An efficient method is developed for an iterative solution of the Poisson and Schro¿dinger equations, which allows systematic studies of the properties of the electron gas in linear deep-etched quantum wires. A much simpler two-dimensional (2D) approximation is developed that accurately reproduces the results of the 3D calculations. A 2D Thomas-Fermi approximation is then derived, and shown to give a good account of average properties. Further, we prove that an analytic form due to Shikin et al. is a good approximation to the electron density given by the self-consistent methods.
Resumo:
Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.
Resumo:
We explore the deformation properties of the newly postulated Barcelona-Catania-Paris (BCP) energy density functional (EDF). The results obtained for three isotope chains of Mg, Dy, and Ra are compared to the available experimental data as well as to the results of the Gogny-D1S force. Results for the fission barrier of 240Pu are also discussed.
Resumo:
We present the study of discrete breather dynamics in curved polymerlike chains consisting of masses connected via nonlinear springs. The polymer chains are one dimensional but not rectilinear and their motion takes place on a plane. After constructing breathers following numerically accurate procedures, we launch them in the chains and investigate properties of their propagation dynamics. We find that breather motion is strongly affected by the presence of curved regions of polymers, while the breathers themselves show a very strong resilience and remarkable stability in the presence of geometrical changes. For chains with strong angular rigidity we find that breathers either pass through bent regions or get reflected while retaining their frequency. Their motion is practically lossless and seems to be determined through local energy conservation. For less rigid chains modeled via second neighbor interactions, we find similarly that chain geometry typically does not destroy the localized breather states but, contrary to the angularly rigid chains, it induces some small but constant energy loss. Furthermore, we find that a curved segment acts as an active gate reflecting or refracting the incident breather and transforming its velocity to a value that depends on the discrete breathers frequency. We analyze the physical reasoning behind these seemingly general breather properties.
Resumo:
The energy and structure of a dilute hard-disks Bose gas are studied in the framework of a variational many-body approach based on a Jastrow correlated ground-state wave function. The asymptotic behaviors of the radial distribution function and the one-body density matrix are analyzed after solving the Euler equation obtained by a free minimization of the hypernetted chain energy functional. Our results show important deviations from those of the available low density expansions, already at gas parameter values x~0.001 . The condensate fraction in 2D is also computed and found generally lower than the 3D one at the same x.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
Transparent conducting, aluminium doped zinc oxide thin films (ZnO:Al) were deposited by radio frequency (RF) magnetron sputtering. The RF power was varied from 60 to 350Wwhereas the substrate temperature was kept at 160 °C. The structural, electrical and optical properties of the as-deposited films were found to be influenced by the deposition power. The X-ray diffraction analysis showed that all the films have a strong preferred orientation along the [001] direction. The crystallite size was varied from 14 to 36 nm, however no significant change was observed in the case of lattice constant. The optical band gap varied in the range 3.44-3.58 eV. The lowest resistivity of 1.2×10 -3Vcm was shown by the films deposited at 250 W. The mobility of the films was found to increase with the deposition power.
Resumo:
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.
Resumo:
We present structural and electrical properties for p- and n-type layers grown close to the transition between a-Si:H and nc-Si:H onto different substrates: Corning 1737 glass, ZnO:Al-coated glass and stainless steel. Structural properties were observed to depend on the substrate properties for samples grown under the same deposition conditions. Different behaviour was observed for n- and p-type material. Stainless steel seemed to enhance crystallinity when dealing with n-type layers, whereas an increased crystalline fraction was obtained on glass for p-type samples. Electrical conduction in the direction perpendicular to the substrate seemed to be mainly determined by the interfaces or by the existence of an amorphous incubation layer that might determine the electrical behaviour. In the direction perpendicular to the substrate, n-type layers exhibited a lower resistance value than p-type ones, showing better contact properties between the layer and the substrate.