101 resultados para Semi-infinite domain
Resumo:
We show that the symmetries of effective D-string actions in constant dilaton backgrounds are directly related to homothetic motions of the background metric. In the presence of such motions, there are infinitely many nonlinearly realized rigid symmetries forming a loop (or looplike) algebra. Near horizon (antideSitter) D3 and D1+D5 backgrounds are discussed in detail and shown to provide 2D interacting field theories with infinite conformal symmetry.
Resumo:
We study dynamics of domain walls in pattern forming systems that are externally forced by a moving space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls. The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic wave trains occurs.
Resumo:
The kinetic domain-growth exponent is studied by Monte Carlo simulation as a function of temperature for a nonconserved order-parameter model. In the limit of zero temperature, the model belongs to the n=(1/4 slow-growth unversality class. This is indicative of a temporal pinning in the domain-boundary network of mixed-, zero-, and finite-curvature boundaries. At finite temperature the growth kinetics is found to cross over to the Allen-Cahn exponent n=(1/2. We obtain that the pinning time of the zero-curvature boundary decreases rapidly with increasing temperature.
Resumo:
We report on the magneto-optical measurements of an epitaxial SrRuO3 film grown on SrTiO3 (0 0 1), which previously was determined to be single domain orientated by x-ray diffraction and Raman spectroscopy techniques. Our experiments reveal a large Kerr rotation, which reaches a maximum value of about 0.5° at low temperature. By measuring magnetic hysteresis loops at different temperatures, we determined the temperature dependence of the Kerr rotation in the polar configuration. Values of the anisotropic magnetoresistance ~ 20% have been measured. These values are remarkably higher than those of other metallic oxides such as manganites. This striking difference can be attributed to the strong spin-orbit interaction of the Ru 4d ion in the SrRuO3 compound.
Resumo:
Given a Lagrangian system depending on the position derivatives of any order, and assuming that certain conditions are satisfied, a second-order differential system is obtained such that its solutions also satisfy the Euler equations derived from the original Lagrangian. A generalization of the singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-Feynman electrodynamics for two charged point particles up to order 1/c4.
Resumo:
A covariant formalism is developed for describing perturbations on vacuum domain walls and strings. The treatment applies to arbitrary domain walls in (N+1)-dimensional flat spacetime, including the case of bubbles of a true vacuum nucleating in a false vacuum. Straight strings and planar walls in de Sitter space, as well as closed strings and walls nucleating during inflation, are also considered. Perturbations are represented by a scalar field defined on the unperturbed wall or string world sheet. In a number of interesting cases, this field has a tachyonic mass and a nonminimal coupling to the world-sheet curvature.
Resumo:
We develop a covariant quantum theory of fluctuations on vacuum domain walls and strings. The fluctuations are described by a scalar field defined on the classical world sheet of the defects. We consider the following cases: straight strings and planar walls in flat space, true vacuum bubbles nucleating in false vacuum, and strings and walls nucleating during inflation. The quantum state for the perturbations is constructed so that it respects the original symmetries of the classical solution. In particular, for the case of vacuum bubbles and nucleating strings and walls, the geometry of the world sheet is that of a lower-dimensional de Sitter space, and the problem reduces to the quantization of a scalar field of tachyonic mass in de Sitter space. In all cases, the root-mean-squared fluctuation is evaluated in detail, and the physical implications are briefly discussed.
Resumo:
We present a study of the magnetic relaxation of several ferrofluids composed of particles of about 40 Å in diameter (Fe3O4FeC, CoFe2O4). Our key observation is a nonthermal character of the relaxation below 3 K for the CoFe2O4 ferrofluid and below 1 K for the FeC ferrofluid. The crossover temperature from thermal to nonthermal (quantum) regime is in accordance with theoretical suggestions of macroscopic quantum tunneling of magnetization in single doma in particles
Resumo:
We present a theoretical study of the quantum depinning of domain walls. Our approach extends earlier work by Stamp and confirms his suggestion that quantum tunneling of domain walls in ferromagnets may reveal itself at a macroscopic level in a manner similar to the Josephson effect in superconductors. The rate of tunneling of a domain wall through a barrier formed by a planar defect is calculated in terms of macroscopic parameters of the ferromagnet. A universal behavior of the WKB exponent in the limit of small barriers is demonstrated. The effect of dissipation on the tunneling rate is studied. It is argued that quantum diffusion of domain walls apparently explains a nonthermal magnetic relaxation observed in some materials at low temperatures.