106 resultados para Power metal
Resumo:
Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).
Resumo:
High optical power density of 0.5 mW/cm2, external quantum efficiency of 0.1%, and population inversion of 7% are reported from Tb+-implanted silicon-rich silicon nitride/oxide light emitting devices. Electrical and electroluminescence mechanisms in these devices were investigated. The excitation cross section for the 543 nm Tb3+ emission was estimated under electrical pumping, resulting in a value of 8.2 × 10−14 cm2, which is one order of magnitude larger than one reported for Tb3+:SiO2 light emitting devices. These results demonstrate the potentiality of Tb+-implanted silicon nitride material for the development of integrated light sources compatible with Si technology.
The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires
Resumo:
The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.
Resumo:
The aim of this brief is to present an original design methodology that permits implementing latch-up-free smart power circuits on a very simple, cost-effective technology. The basic concept used for this purpose is letting float the wells of the MOS transistors most susceptible to initiate latch-up.
Resumo:
[cat] Espanya és un dels principals mercats de productes pesquers d’Europa i del món. El consum de productes pesquers ha estat tradicionalment molt important a Espanya, el 2005 es varen consumir 36,7 kg per persona (MAPA, diversos anys). Malgrat això, el mercat i cóm interactuen els diversos nivells de la cadena de comercialització han gaudit de poca atenció. En aquest estudi, utilitzant dades setmanals, s’analitza per als dotze principals productes pesquers, l’elasticitat en la transmissió de preus al llarg de la cadena de comercialització a Espanya (llotja, mercat central i detallista). Finalment s’investiga la presència d’assimetria en la transmissió de preus entre aquests nivells de mercat. Els resultats obtinguts tenen importants implicacions a l’hora d’analitzar la demanda, poder de mercat i marges al llarg del mercat per als productes pesquers.
Resumo:
This paper offers empirical evidence from Spain of a connection between the tax administration and the political power. Firstly, the regional tax administration is not immune to the budgetary situation of regional government, and tends to exert a greater (or lesser) effort in tax collection the greater (or lower) the (expected) public deficit. At the same time, the system of unconditional grants from the central layer of government provokes an ¿income effect¿ which disincentivises the efforts of the tax administration. Secondly, these efforts also decrease when the margin to lose a parliamentary seat in an electoral district is cut, although the importance of this disincentive decreases according to the parliamentary strength of the incumbent
Resumo:
The objective of this work is to study the impact of the unions' bargaining power on production and wages. We present a model where a competitive final good is produced through two substitutable intermediate goods, one produced by unskilled labor and the other by skilled labor. Potential workers decide at their cost to become skilled or unskilled and, thus, labor supplies are determined endogenously. We find that the reallocation of the labor supplies due to changes in the unskilled (or skilled) unions¿ bargaining power may have a positive impact on the final goods production. At the same time, total labor earnings increase with the unskilled unions¿ bargaining power if the final goods production increases too. We also show that the minimum wage legislation has efects similar to an increase in the bargaining power of the unskilled unions.
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
Nonlocal approximations for the electronic exchange and correlation effects are used to compute, within density-functional theory, the polarizability and surface-plasma frequencies of small jelliumlike alkali-metal clusters. The results are compared with those obtained using the local-density approximation and with available experimental data, showing the relevance of these effects in obtaining an accurate description of the surface response of metallic clusters.
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.
Resumo:
A deformed-jellium model is used to calculate the fission barrier height of positive doubly charged sodium clusters within an extended Thomas-Fermi approximation. The fissioning cluster is continuously deformed from the parent configuration until it splits into two fragments. Although the shape of the fission barrier obviously depends on the parametrization of the fission path, we have found that remarkably, the maximum of the barrier corresponds to a configuration in which the emerging fragments are already formed and rather well apart. The implication of this finding in the calculation of critical numbers for fission is illustrated in the case of multiply charged Na clusters.
Resumo:
The response function of alkali-metal clusters, modeled as jellium spheres, to dipole (L=1) and quadrupole (L=2) spin-dependent fields is obtained within the time-dependent local-spin-density approximation of density-functional theory. We predict the existence of low-energy spin modes of surface type, which are identified from the strength function. Their collectivity and evolution with size are discussed.
Resumo:
Indium tin oxide (ITO) is one of the widely used transparent conductive oxides (TCO) for application as transparent electrode in thin film silicon solar cells or thin film transistors owing to its low resistivity and high transparency. Nevertheless, indium is a scarce and expensive element and ITO films require high deposition temperature to achieve good electrical and optical properties. On the other hand, although not competing as ITO, doped Zinc Oxide (ZnO) is a promising and cheaper alternative. Therefore, our strategy has been to deposit ITO and ZnO multicomponent thin films at room temperature by radiofrequency (RF) magnetron co-sputtering in order to achieve TCOs with reduced indium content. Thin films of the quaternary system Zn-In-Sn-O (ZITO) with improved electrical and optical properties have been achieved. The samples were deposited by applying different RF powers to ZnO target while keeping a constant RF power to ITO target. This led to ZITO films with zinc content ratio varying between 0 and 67%. The optical, electrical and morphological properties have been thoroughly studied. The film composition was analysed by X-ray Photoelectron Spectroscopy. The films with 17% zinc content ratio showed the lowest resistivity (6.6 × 10 - 4 Ω cm) and the highest transmittance (above 80% in the visible range). Though X-ray Diffraction studies showed amorphous nature for the films, using High Resolution Transmission Electron Microscopy we found that the microstructure of the films consisted of nanometric crystals embedded in a compact amorphous matrix. The effect of post deposition annealing on the films in both reducing and oxidizing atmospheres were studied. The changes were found to strongly depend on the zinc content ratio in the films.