119 resultados para Piezoelectric Finite Solid
Resumo:
The problem of freeze-out (FO) in relativistic heavy-ion reactions is addressed. We develop and analyze an idealized one-dimensional model of FO in a finite layer, based on the covariant FO probability. The resulting post FO phase-space distributions are discussed for different FO probabilities and layer thicknesses.
Resumo:
The recent theory of Tsironis and Grigolini for the mean first-passage time from one metastable state to another of a bistable potential for long correlation times of the noise is extended to large but finite correlation times.
Resumo:
The properties of hot, dense stellar matter are investigated with a finite temperature nuclear Thomas-Fermi model.
Resumo:
We comment on a recent paper by Uma Maheswari et al. in which it is claimed that quantal calculations of the half-infinite nuclear matter, in contrast to semiclassical approximations, exhibit an unusually strong dependence of the 90%10% surface thickness of the density profile on the Fermi momentum kF at saturation. This conclusion was carried over to the surface incompressibility. On the contrary we find essential agreement between semiclassical and quantal results and very weak dependence on kF of the quantities in question.
Resumo:
We argue that low-temperature effects in QED can, if anywhere, only be quantitatively interesting for bound electrons. Unluckily the dominant thermal contribution turns out to be level independent, so that it does not affect the frequency of the transition radiation.
Resumo:
We present a numerical study of classical particles diffusing on a solid surface. The particles motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two-dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics.
Resumo:
We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.
Resumo:
We present a numerical and partially analytical study of classical particles obeying a Langevin equation that describes diffusion on a surface modeled by a two-dimensional potential. The potential may be either periodic or random. Depending on the potential and the damping, we observe superdiffusion, large-step diffusion, diffusion, and subdiffusion. Superdiffusive behavior is associated with low damping and is in most cases transient, albeit often long. Subdiffusive behavior is associated with highly damped particles in random potentials. In some cases subdiffusive behavior persists over our entire simulation and may be characterized as metastable. In any case, we stress that this rich variety of behaviors emerges naturally from an ordinary Langevin equation for a system described by ordinary canonical Maxwell-Boltzmann statistics.