139 resultados para Optical character recognition
Resumo:
Plan recognition is the problem of inferring the goals and plans of an agent from partial observations of her behavior. Recently, it has been shown that the problem can be formulated and solved usingplanners, reducing plan recognition to plan generation.In this work, we extend this model-basedapproach to plan recognition to the POMDP setting, where actions are stochastic and states are partially observable. The task is to infer a probability distribution over the possible goals of an agent whose behavior results from a POMDP model. The POMDP model is shared between agent and observer except for the true goal of the agent that is hidden to the observer. The observations are action sequences O that may contain gaps as some or even most of the actions done by the agent may not be observed. We show that the posterior goal distribution P(GjO) can be computed from the value function VG(b) over beliefs b generated by the POMDPplanner for each possible goal G. Some extensionsof the basic framework are discussed, and a numberof experiments are reported.
Resumo:
Having lived through a bloody civil war in the 1930s followed by four decades of General Franco’s dictatorship, the Spanish state carried out a transition to a democratic system at the end of the 1970s. The 1978 Constitution was the legal outcome of this transition process. Among other things, it established a territorial model – the so-called “Estado de las Autonomías” (State of Autonomous Communities) – which was designed to satisfy the historical demands for recognition and self-government of, above all, the citizens and institutions of Catalonia and the Basque Country .In recent years support for independence has increased in Catalonia. Different indicators show that pro-independence demands are endorsed by a majority of its citizens, as well as by most of the political parties and organizations that represent its civil society. This is a new phenomenon. Those in favour of independence had been in the minority throughout the 20th century. Nowadays, however, demands of a pro-autonomy and pro-federalist nature, which until recently had been dominant, have gradually lost public support in favour of demands for self-determination and secession. This paper analyses the massive increase in support for secession in Catalonia during the early years of the 21st century. After describing the different theories of secession in plurinational liberal democracies (section 1), we analyse Catalonia’s political evolution over the past decade focusing on the shortcomings with regard to constitutional recognition and accommodation displayed by the Spanish political system. The latter have been exacerbated by the reform process of Catalonia’s Statute of Autonomy (2006) and the subsequent judgement of Spain’s Constitutional Court regarding the aforementioned Statute (2010) (section 2). Finally, we present our conclusions by linking the Catalan case with theories of secession applied to plurinational contexts
Resumo:
Several features that can be extracted from digital images of the sky and that can be useful for cloud-type classification of such images are presented. Some features are statistical measurements of image texture, some are based on the Fourier transform of the image and, finally, others are computed from the image where cloudy pixels are distinguished from clear-sky pixels. The use of the most suitable features in an automatic classification algorithm is also shown and discussed. Both the features and the classifier are developed over images taken by two different camera devices, namely, a total sky imager (TSI) and a whole sky imager (WSC), which are placed in two different areas of the world (Toowoomba, Australia; and Girona, Spain, respectively). The performance of the classifier is assessed by comparing its image classification with an a priori classification carried out by visual inspection of more than 200 images from each camera. The index of agreement is 76% when five different sky conditions are considered: clear, low cumuliform clouds, stratiform clouds (overcast), cirriform clouds, and mottled clouds (altocumulus, cirrocumulus). Discussion on the future directions of this research is also presented, regarding both the use of other features and the use of other classification techniques
Resumo:
Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2' with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.
Resumo:
I, H¿ and [SII] CCD images of the regions around 4 young IRAS sources embedded in the dense molecular cloud cores CB 6, CB 39, AFGL 5142, and L 1251 are presented. Reflection nebulosities are found in all 4 regions. Herbig-Haro objects are detected in AFGL 5142 and L 1251. In both cases, the HH objects are new discoveries.
Resumo:
We present I-band deep CCD exposures of the fields of galactic plane radio variables. An optical counterpart, based on positional coincidence, has been found for 15 of the 27 observed program objects. The Johnson I magnitude of the sources identified is in the range 18-21.
Resumo:
We report an investigation on the optical properties of Cu3Ge thin films displaying very high conductivity, with thickness ranging from 200 to 2000 Å, deposited on Ge substrates. Reflectance, transmittance, and ellipsometric spectroscopy measurements were performed at room temperature in the 0.01-6.0, 0.01-0.6, and 1.4-5.0 eV energy range, respectively. The complex dielectric function, the optical conductivity, the energy-loss function, and the effective charge density were obtained over the whole spectral range. The low-energy free-carrier response was well fitted by using the classical Drude-Lorentz dielectric function. A simple two-band model allowed the resulting optical parameters to be interpreted coherently with those previously obtained from transport measurements, hence yielding the densities and the effective masses of electrons and holes.
Resumo:
We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
Optical absorption spectra and transmission electron microscopy (TEM) observations on InGaAs/InP layers under compressive strain are reported. From the band¿gap energy dispersion, the magnitude of the strain inhomogeneities. Is quantified and its microscopic origin is analyzed in view of the layer microstructure. TEM observations reveal a dislocation network at the layer interface the density of which correlates with ¿¿. It is concluded that local variations of dislocation density are responsible for the inhomogeneous strain field together with another mechanism that dominates when the dislocation density is very low.