63 resultados para NEUTRON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used the unique spatial sensitivity of polarized neutron and soft x-ray beams in reflection geometry to measure the depth dependence of magnetization across the interface between a ferromagnet and an antiferromagnet. The net uncompensated magnetization near the interface responds to applied field, while uncompensated spins in the antiferromagnet bulk are pinned, thus providing a means to establish exchange bias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of Sn4+ cations within the five crystallographic sites of the magnetoplumbite (M) ‐like compound BaFe12−2xCoxSnxO19 has been analyzed using single‐crystal x‐ray‐diffraction data. The species Fe3+ and Co2+ cannot be distinguished using x rays because of their very similar atomic numbers; however, the calculation of the apparent valencies for the different sites allows an insight into the Co2+ cation segregation. The use of previous data from neutron powder diffraction allows a precise picture of the cation distribution, which indicates a pronounced site selectivity for both Sn4+ and Co2+ cations. The Sn4+ cations prefer the 4f2 sites and to a much lower extent the 12k sites, while they do not enter the octahedral 2a sites at all. Co2+ cations are distributed among tetrahedral and octahedral sites displaying a clear preference for the tetrahedral 4f1 sites. Magnetic measurements indicate that the compound still exhibits uniaxial anisotropy with the easy direction parallel to the c axis. Nevertheless, the magnetic structure shows a considerable degree of noncolinearity. A strong reduction of the magnetic anisotropy regarding that of the undoped compound is also detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetization, heat capacity, and neutron diffraction experiments on the beta-phase of the dithiadiazolyl radical, p-NC.C6F4.CNSSN., provide conclusive evidence that this system exhibits noncollinear antiferromagnetism at 35.5 K, an unprecedented temperature for an organic radical. On the basis of magnetization and powder neutron diffraction results, coupled with theoretical calculations of the spin distribution within the molecule, a magnetic structure for this compound is proposed in which the interactions propagate through S . . .N contacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The approaches of comparative studies and profile measurements, often used in order to detect post-depositional alterations of ceramics, have been applied simultaneously to two sets of Roman pottery, both of which include altered individuals. As analytical techniques, Neutron Activation Analysis and X-Ray Diffraction have been used. Both approaches lead to substantially different results. This shows that they detect different levels of alteration and should complement each other rather than being used exclusively. For the special process of a glassy phase decomposition followed by a crystallization of the Na-zeolite analcime, the results suggest that it changes high-fired calcareous pottery rapidly, and so fundamentally that the results of various archaeometric techniques can be severely disturbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the electric dipole polarizability α D in 208 Pb based on the predictions of a large and representative set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better understand the correlations between α D and other isovector observables. Insights from the droplet model suggest that the product of α D and the nuclear symmetry energy at saturation density J is much better correlated with the neutron skin thickness r np of 208 Pb than the polarizability alone. Correlations of α D J with r np and with the symmetry energy slope parameter L suggest that α D J is a strong isovector indicator. Hence, we explore the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our theoretical predictions against measurements of both α D and the parity-violating asymmetry in 208 Pb. We find that the recent experimental determination of α D in 208 Pb in combination with the range for the symmetry energy at saturation density J = [31 ± (2) est] MeV suggests r np (208 Pb) = 0 . 165 ± (0 . 009) expt ± (0 . 013) theor ± (0.021) est fm and L = 43 ± (6) expt ± (8) theor ± (12) est MeV

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well established that at ambient and supercooled conditions water can be described as a percolating network of H bonds. This work is aimed at identifying, by neutron diffraction experiments combined with computer simulations, a percolation line in supercritical water, where the extension of the H-bond network is in question. It is found that in real supercritical water liquidlike states are observed at or above the percolation threshold, while below this threshold gaslike water forms small, sheetlike configurations. Inspection of the three-dimensional arrangement of water molecules suggests that crossing of this percolation line is accompa- nied by a change of symmetry in the first neighboring shell of molecules from trigonal below the line to tetrahedral above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the ~80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (also known as HD 215227), although that was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of the Be star. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), reveals a black hole of 3.8 to 6.9 solar masses orbiting MWC 656, the candidate counterpart of the gamma-ray source AGL J2241+4454. The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 x 10-7 times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect by conventional X-ray surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, 13 ceramic samples were subjected to dissolution using three different procedures: (a) acid attack in open PTFE vessels with a mixture of HF-HClO4, (b) fusion of the sample with lithium metaborate and (c) microwave digestion in PTFE bombs. The samples used in the study had been previously analyzed by neutron activation analysis (NAA), X-ray fluorescence (XRF) and X-ray diffraction (XRD) and they cover a wide range of ceramics fired in different atmospheres and temperatures as well as different mineralogical and chemical compositions. The effectiveness of each procedure is evaluated in terms of its ability to dissolve the various mineralogical phases of the samples, of the number of elements that can be determined and of the time needed for the whole scheme of analysis to be completed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding energies of deformed even-even nuclei have been analyzed within the framework of a recently proposed microscopic-macroscopic model. We have used the semiclassical Wigner-Kirkwood ̄h expansion up to fourth order, instead of the usual Strutinsky averaging scheme, to compute the shell corrections in a deformed Woods-Saxon potential including the spin-orbit contribution. For a large set of 561 even-even nuclei with Z 8 and N 8, we find an rms deviation from the experiment of 610 keV in binding energies, comparable to the one found for the same set of nuclei using the finite range droplet model of Moller and Nix (656 keV). As applications of our model, we explore its predictive power near the proton and neutron drip lines as well as in the superheavy mass region. Next, we systematically explore the fourth-order Wigner-Kirkwood corrections to the smooth part of the energy. It is found that the ratio of the fourth-order to the second-order corrections behaves in a very regular manner as a function of the asymmetry parameter I=(N−Z)/A. This allows us to absorb the fourth-order corrections into the second-order contributions to the binding energy, which enables us us to simplify and speed up the calculation of deformed nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform Hartree calculations of symmetric and asymmetric semi-infinite nuclear matter in the framework of relativistic models based on effective hadronic field theories as recently proposed in the literature. In addition to the conventional cubic and quartic scalar self-interactions, the extended models incorporate a quartic vector self-interaction, scalar-vector non-linearities and tensor couplings of the vector mesons. We investigate the implications of these terms on nuclear surface properties such as the surface energy coefficient, surface thickness, surface stiffness coefficient, neutron skin thickness and the spin-orbit force.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the results for infinite nuclear and neutron matter using the standard relativistic mean field model and its recent effective field theory motivated generalization. For the first time, we show quantitatively that the inclusion in the effective theory of vector meson self-interactions and scalar-vector cross-interactions explains naturally the recent experimental observations of the softness of the nuclear equation of state, without losing the advantages of the standard relativistic model for finite nuclei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of technology transfer in pottery production to the periphery of the Mycenaean world has been addressed by considering two different areas, southern Italy and central Macedonia. Technological features such as ceramic paste, decoration and firing have been determined for different ceramic groups established according to provenance criteria. The studies of technology and provenance have been performed following an archaeometric approach, using neutron activation analysis, petrographic analysis, X-ray diffraction and scanning electron microscopy. The results have revealed the existence of two different models. On the one hand, southern Italy seems to exhibit a more organized pottery production, which follows a Mycenaean-like technology, while in central Macedonia production is probably more varied, being based in part on the technology of the local tradition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population studies of unidentified EGRET sources suggest that there exist at least three different populations of galactic gamma-ray sources. One of these populations is formed by young objects distributed along the galactic plane with a strong concentration toward the inner spiral arms of the Galaxy. Variability, spectral and correlation analysis indicate that this population is not homogeneous. In particular, there is a subgroup of sources that display clear variability in their gamma-ray fluxes on timescales from days to months. Following the proposal by Kaufman Bernad\'o et al. (2002), we suggest that this group of sources might be high-mass microquasars, i.e. accreting black holes or neutron stars with relativistic jets and early-type stellar companions. We present detailed inhomogeneous models for the gamma-ray emission of these systems that include both external and synchrotron self-Compton interactions. We have included effects of interactions between the jet and all external photon fields to which it is exposed: companion star, accretion disk, and hot corona. We make broadband calculations to predict the spectral energy distribution of these objects from radio up to GeV energies. The results and predictions can be tested by present and future gamma-ray instruments like INTEGRAL, AGILE, and GLAST.