66 resultados para Multiprogramming (Electronic computers)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic and magnetic structures of the LaMnO3 compound have been studied by means of periodic calculations within the framework of spin polarized hybrid density-functional theory. In order to quantify the role of approximations to electronic exchange and correlation three different hybrid functionals have been used which mix nonlocal Fock and local Dirac-Slater exchange. Periodic Hartree-Fock results are also reported for comparative purposes. The A-antiferromagnetic ground state is properly predicted by all methods including Hartree-Fock exchange. In general, the different hybrid methods provide a rather accurate description of the band gap and of the two magnetic coupling constants, strongly suggesting that the corresponding description of the electronic structure is also accurate. An important conclusion emerging from this study is that the nature of the occupied states near the Fermi level is intermediate between the Hartree-Fock and local density approximation descriptions with a comparable participation of both Mn and O states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of the wurtzite-type phase of aluminum nitride has been investigated by means of periodic ab initio Hartree-Fock calculations. The binding energy, lattice parameters (a,c), and the internal coordinate (u) have been calculated. All structural parameters are in excellent agreement with the experimental data. The electronic structure and bonding in AlN are analyzed by means of density-of-states projections and electron-density maps. The calculated values of the bulk modulus, its pressure derivative, the optical-phonon frequencies at the center of the Brillouin zone, and the full set of elastic constants are in good agreement with the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate. A proposal to realize a SWAP gate within the same molecule is also discussed. Electronic paramagnetic resonance experiments confirm that CNOT and SWAP transitions are not forbidden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial information is extremely sensitive. Hence, electronic banking must provide a robust system to authenticate its customers and let them access their data remotely. On the other hand, such system must be usable, affordable, and portable.We propose a challengeresponse based one-time password (OTP) scheme that uses symmetriccryptography in combination with a hardware security module. The proposed protocol safeguards passwords from keyloggers and phishing attacks.Besides, this solution provides convenient mobility for users who want to bank online anytime and anywhere, not just from their owntrusted computers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of our study was to see whether an artificial olfactory system can be used as a nondestructive instrument to measure fruit maturity. In order to make an objective comparison, samples measured with our electronic nose prototype were later characterized using fruit quality techniques. The cultivars chosen for the study were peaches, nectarines, apples, and pears. With peaches and nectarines, a PCA analysis on the electronic nose measurements helped to guess optimal harvest dates that were in good agreement with the ones obtained with fruit quality techniques. A good correlation between sensor signals and some fruit quality indicators was also found. With pears, the study addressed the possibility of classifying samples regarding their ripeness state after different cold storage and shelf-life periods. A PCA analysis showed good separation between samples measured after a shelf-life period of seven days and samples with four or less days. Finally, the electronic nose monitored the shelf-life ripening of apples. A good correlation between electronic nose signals and firmness, starch index, and acidity parameters was found. These results prove that electronic noses have the potential of becoming a reliable instrument to assess fruit ripeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes the creation of a bioinspired electronic white cane for blind people using the whiskers principle for short-range navigation and exploration. Whiskers are coarse hairs of an animal's face that tells the animal that it has touched something using the nerves of the skin. In this work the raw data acquired from a low-size terrestrial LIDAR and a tri-axial accelerometer is converted into tactile information using several electromagnetic devices configured as a tactile belt. The LIDAR and the accelerometer are attached to the user’s forearm and connected with a wire to the control unit placed on the belt. Early validation experiments carried out in the laboratory are promising in terms of usability and description of the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Canopy characterization is a key factor to improve pesticide application methods in tree crops and vineyards. Development of quick, easy and efficient methods to determine the fundamental parameters used to characterize canopy structure is thus an important need. In this research the use of ultrasonic and LIDAR sensors have been compared with the traditional manual and destructive canopy measurement procedure. For both methods the values of key parameters such as crop height, crop width, crop volume or leaf area have been compared. Obtained results indicate that an ultrasonic sensor is an appropriate tool to determine the average canopy characteristics, while a LIDAR sensor provides more accuracy and detailed information about the canopy. Good correlations have been obtained between crop volume (CVU) values measured with ultrasonic sensors and leaf area index, LAI (R2 = 0.51). A good correlation has also been obtained between the canopy volume measured with ultrasonic and LIDAR sensors (R2 = 0.52). Laser measurements of crop height (CHL) allow one to accurately predict the canopy volume. The proposed new technologies seems very appropriate as complementary tools to improve the efficiency of pesticide applications, although further improvements are still needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated doped and undoped layers of microcrystalline silicon prepared by hot-wire chemical vapour deposition optically, electrically and by means of transmission electron microscopy. Besides needle-like crystals grown perpendicular to the substrate's surface, all of the layers contained a noncrystalline phase with a volume fraction between 4% and 25%. A high oxygen content of several per cent in the porous phase was detected by electron energy loss spectrometry. Deep-level transient spectroscopy of the crystals suggests that the concentration of electrically active defects is less than 1% of the undoped background concentration of typically 10^17 cm -3. Frequency-dependent measurements of the conductance and capacitance perpendicular to the substrate surface showed that a hopping process takes place within the noncrystalline phase parallel to the conduction in the crystals. The parasitic contribution to the electrical circuit arising from the porous phase is believed to be an important loss mechanism in the output of a pin-structured photovoltaic solar cell deposited by hot-wire CVD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogenated nanocrystalline silicon (nc-Si:H) obtained by hot-wire chemical vapour deposition (HWCVD) at low substrate temperature (150 °C) has been incorporated as the active layer in bottom-gate thin-film transistors (TFTs). These devices were electrically characterised by measuring in vacuum the output and transfer characteristics for different temperatures. The field-effect mobility showed a thermally activated behaviour which could be attributed to carrier trapping at the band tails, as in hydrogenated amorphous silicon (a-Si:H), and potential barriers for the electronic transport. Trapped charge at the interfaces of the columns, which are typical in nc-Si:H, would account for these barriers. By using the Levinson technique, the quality of the material at the column boundaries could be studied. Finally, these results were interpreted according to the particular microstructure of nc-Si:H.