79 resultados para Markov chain Monte Carlo methods
Resumo:
This article is an introduction to Malliavin Calculus for practitioners.We treat one specific application to the calculation of greeks in Finance.We consider also the kernel density method to compute greeks and anextension of the Vega index called the local vega index.
Resumo:
In this paper we propose a Pyramidal Classification Algorithm,which together with an appropriate aggregation index producesan indexed pseudo-hierarchy (in the strict sense) withoutinversions nor crossings. The computer implementation of thealgorithm makes it possible to carry out some simulation testsby Monte Carlo methods in order to study the efficiency andsensitivity of the pyramidal methods of the Maximum, Minimumand UPGMA. The results shown in this paper may help to choosebetween the three classification methods proposed, in order toobtain the classification that best fits the original structureof the population, provided we have an a priori informationconcerning this structure.
Resumo:
In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states.
Resumo:
If single case experimental designs are to be used to establish guidelines for evidence-based interventions in clinical and educational settings, numerical values that reflect treatment effect sizes are required. The present study compares four recently developed procedures for quantifying the magnitude of intervention effect using data with known characteristics. Monte Carlo methods were used to generate AB designs data with potential confounding variables (serial dependence, linear and curvilinear trend, and heteroscedasticity between phases) and two types of treatment effect (level and slope change). The results suggest that data features are important for choosing the appropriate procedure and, thus, inspecting the graphed data visually is a necessary initial stage. In the presence of serial dependence or a change in data variability, the Nonoverlap of All Pairs (NAP) and the Slope and Level Change (SLC) were the only techniques of the four examined that performed adequately. Introducing a data correction step in NAP renders it unaffected by linear trend, as is also the case for the Percentage of Nonoverlapping Corrected Data and SLC. The performance of these techniques indicates that professionals" judgments concerning treatment effectiveness can be readily complemented by both visual and statistical analyses. A flowchart to guide selection of techniques according to the data characteristics identified by visual inspection is provided.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.
Resumo:
In this paper we consider a stochastic process that may experience random reset events which suddenly bring the system to the starting value and analyze the relevant statistical magnitudes. We focus our attention on monotonic continuous-time random walks with a constant drift: The process increases between the reset events, either by the effect of the random jumps, or by the action of the deterministic drift. As a result of all these combined factors interesting properties emerge, like the existence (for any drift strength) of a stationary transition probability density function, or the faculty of the model to reproduce power-law-like behavior. General formulas for two extreme statistics, the survival probability, and the mean exit time, are also derived. To corroborate in an independent way the results of the paper, Monte Carlo methods were used. These numerical estimations are in full agreement with the analytical predictions.
Resumo:
The Hardy-Weinberg law, formulated about 100 years ago, states that under certainassumptions, the three genotypes AA, AB and BB at a bi-allelic locus are expected to occur inthe proportions p2, 2pq, and q2 respectively, where p is the allele frequency of A, and q = 1-p.There are many statistical tests being used to check whether empirical marker data obeys theHardy-Weinberg principle. Among these are the classical xi-square test (with or withoutcontinuity correction), the likelihood ratio test, Fisher's Exact test, and exact tests in combinationwith Monte Carlo and Markov Chain algorithms. Tests for Hardy-Weinberg equilibrium (HWE)are numerical in nature, requiring the computation of a test statistic and a p-value.There is however, ample space for the use of graphics in HWE tests, in particular for the ternaryplot. Nowadays, many genetical studies are using genetical markers known as SingleNucleotide Polymorphisms (SNPs). SNP data comes in the form of counts, but from the countsone typically computes genotype frequencies and allele frequencies. These frequencies satisfythe unit-sum constraint, and their analysis therefore falls within the realm of compositional dataanalysis (Aitchison, 1986). SNPs are usually bi-allelic, which implies that the genotypefrequencies can be adequately represented in a ternary plot. Compositions that are in exactHWE describe a parabola in the ternary plot. Compositions for which HWE cannot be rejected ina statistical test are typically “close" to the parabola, whereas compositions that differsignificantly from HWE are “far". By rewriting the statistics used to test for HWE in terms ofheterozygote frequencies, acceptance regions for HWE can be obtained that can be depicted inthe ternary plot. This way, compositions can be tested for HWE purely on the basis of theirposition in the ternary plot (Graffelman & Morales, 2008). This leads to nice graphicalrepresentations where large numbers of SNPs can be tested for HWE in a single graph. Severalexamples of graphical tests for HWE (implemented in R software), will be shown, using SNPdata from different human populations
Resumo:
We develop a general error analysis framework for the Monte Carlo simulationof densities for functionals in Wiener space. We also study variancereduction methods with the help of Malliavin derivatives. For this, wegive some general heuristic principles which are applied to diffusionprocesses. A comparison with kernel density estimates is made.
Resumo:
DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
The problem of jointly estimating the number, the identities, and the data of active users in a time-varying multiuser environment was examined in a companion paper (IEEE Trans. Information Theory, vol. 53, no. 9, September 2007), at whose core was the use of the theory of finite random sets on countable spaces. Here we extend that theory to encompass the more general problem of estimating unknown continuous parameters of the active-user signals. This problem is solved here by applying the theory of random finite sets constructed on hybrid spaces. We doso deriving Bayesian recursions that describe the evolution withtime of a posteriori densities of the unknown parameters and data.Unlike in the above cited paper, wherein one could evaluate theexact multiuser set posterior density, here the continuous-parameter Bayesian recursions do not admit closed-form expressions. To circumvent this difficulty, we develop numerical approximationsfor the receivers that are based on Sequential Monte Carlo (SMC)methods (“particle filtering”). Simulation results, referring to acode-divisin multiple-access (CDMA) system, are presented toillustrate the theory.
Resumo:
We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
Although the histogram is the most widely used density estimator, itis well--known that the appearance of a constructed histogram for a given binwidth can change markedly for different choices of anchor position. In thispaper we construct a stability index $G$ that assesses the potential changesin the appearance of histograms for a given data set and bin width as theanchor position changes. If a particular bin width choice leads to an unstableappearance, the arbitrary choice of any one anchor position is dangerous, anda different bin width should be considered. The index is based on the statisticalroughness of the histogram estimate. We show via Monte Carlo simulation thatdensities with more structure are more likely to lead to histograms withunstable appearance. In addition, ignoring the precision to which the datavalues are provided when choosing the bin width leads to instability. We provideseveral real data examples to illustrate the properties of $G$. Applicationsto other binned density estimators are also discussed.