119 resultados para INVARIANT-MANIFOLDS
Resumo:
We present an algorithm for the computation of reducible invariant tori of discrete dynamical systems that is suitable for tori of dimensions larger than 1. It is based on a quadratically convergent scheme that approximates, at the same time, the Fourier series of the torus, its Floquet transformation, and its Floquet matrix. The Floquet matrix describes the linearization of the dynamics around the torus and, hence, its linear stability. The algorithm presents a high degree of parallelism, and the computational effort grows linearly with the number of Fourier modes needed to represent the solution. For these reasons it is a very good option to compute quasi-periodic solutions with several basic frequencies. The paper includes some examples (flows) to show the efficiency of the method in a parallel computer. In these flows we compute invariant tori of dimensions up to 5, by taking suitable sections.
Resumo:
We describe an equivalence of categories between the category of mixed Hodge structures and a category of vector bundles on the toric complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalises the notion of R-split mixed Hodge structure and compute extensions in the category of mixed Hodge structures in terms of extensions of the corresponding vector bundles. We also give a relative version of this correspondence and apply it to define stratifications of the bases of the variations of mixed Hodge structure.
Resumo:
Let A be a simple, unital, finite, and exact C*-algebra which absorbs the Jiang-Su algebra Z tensorially. We prove that the Cuntz semigroup of A admits a complete order embedding into an ordered semigroup which is obtained from the Elliott invariant in a functorial manner. We conjecture that this embedding is an isomor phism, and prove the conjecture in several cases. In these same cases - Z-stable algebras all - we prove that the Elliott conjecture in its strongest form is equivalent to a conjecture which appears much weaker. Outside the class of Z-stable C*-algebras, this weaker conjecture has no known counterexamples, and it is plausible that none exist. Thus, we reconcile the still intact principle of Elliott's classification conjecture -that K-theoretic invariants will classify separable and nuclear C*-algebras- with the recent appearance of counterexamples to its strongest concrete form.
Resumo:
The filling length of an edge-circuit η in the Cayley 2-complex of a finite presentation of a group is the minimal integer length L such that there is a combinatorial null-homotopy of η down to a base point through loops of length at most L. We introduce similar notions in which the full-homotopy is not required to fix a base point, and in which the contracting loop is allowed to bifurcate. We exhibit a group in which the resulting filling invariants exhibit dramatically different behaviour to the standard notion of filling length. We also define the corresponding filling invariants for Riemannian manifolds and translate our results to this setting.
Resumo:
For bilipschitz images of Cantor sets in Rd we estimate the Lipschitz harmonic capacity and show this capacity is invariant under bilipschitz homeomorphisms.
Resumo:
We prove that the Cuntz semigroup is recovered functorially from the Elliott invariant for a large class of C¤-algebras. In particular, our results apply to the largest class of simple C¤-algebras for which K-theoretic classification can be hoped for. This work has three significant consequences. First, it provides new conceptual insight into Elliott's classification program, proving that the usual form of the Elliott conjecture is equivalent, among Z-stable algebras, to a conjecture which is in general substantially weaker and for which there are no known counterexamples. Second and third, it resolves, for the class of algebras above, two conjectures of Blackadar and Handelman concerning the basic structure of dimension functions on C¤-algebras. We also prove in passing that the Kuntz-Pedersen semigroup is recovered functorially from the Elliott invariant for all simple unital C¤-algebras of interest.
Resumo:
In the asymptotic expansion of the hyperbolic specification of the colored Jones polynomial of torus knots, we identify different geometric contributions, in particular Chern-Simons invariant and Reidemeister torsion.
Resumo:
We establish a one-to-one correspondence between the renormalizations and proper totally invariant closed sets (i.e., α-limit sets) of expanding Lorenz map, which enable us to distinguish periodic and non-periodic renormalizations. We describe the minimal renormalization by constructing the minimal totally invariant closed set, so that we can define the renormalization operator. Using consecutive renormalizations, we obtain complete topological characteriza- tion of α-limit sets and nonwandering set decomposition. For piecewise linear Lorenz map with slopes ≥ 1, we show that each renormalization is periodic and every proper α-limit set is countable.
Resumo:
L'objectiu d'aquest projecte ha estat generalitzar i integrar la funcionalitat de dos projectes anteriors que ampliaven el tractament que oferia el Magma respecte a les matrius de Hadamard. Hem implementat funcions genèriques que permeten construir noves matrius Hadamard de qualsevol mida per a cada rang i dimensió de nucli, i així ampliar la seva base de dades. També hem optimitzat la funció que calcula el nucli, i hem desenvolupat funcions que calculen la invariant Symmetric Hamming Distance Enumerator (SH-DE) proposada per Kai-Tai Fang i Gennian Gei que és més sensible per a la detecció de la no equivalència de les matrius Hadamard.
Resumo:
This note contains some remarks about the homologies that can be associated to a foliation which is invariant and uniformly expanded by a diffeomorphism. We construct a family of 'dynamical' closed currents supported on the foliation which help us relate the geometric volume growth of the leaves under the diffeomorphism with the map induced on homology in the case when these currents have nonzero homology.
Resumo:
In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.
Resumo:
Este trabajo presenta un sistema para detectar y clasificar objetos binarios según la forma de éstos. En el primer paso del procedimiento, se aplica un filtrado para extraer el contorno del objeto. Con la información de los puntos de forma se obtiene un descriptor BSM con características altamente descriptivas, universales e invariantes. En la segunda fase del sistema se aprende y se clasifica la información del descriptor mediante Adaboost y Códigos Correctores de Errores. Se han usado bases de datos públicas, tanto en escala de grises como en color, para validar la implementación del sistema diseñado. Además, el sistema emplea una interfaz interactiva en la que diferentes métodos de procesamiento de imágenes pueden ser aplicados.
Resumo:
Estudi realitzat a partir d’una estada al Physics Department de la New York University, United States, Estats Units, entre 2006 i 2008. Una de les observacions de més impacte en la cosmologia moderna ha estat la determinació empírica que l’Univers es troba actualment en una fase d’Expansió Accelerada (EA). Aquest fenòmen implica que o bé l’Univers està dominat per un nou sector de matèria/energia, o bé la Relativitat General deixa de tenir validesa a escales cosmològiques. La primera possibilitat comprèn els models d’Energia Fosca (EF), i el seu principal problema és que l’EF ha de tenir propietats tan especials que es fan difícils de justificar teòricament. La segona possibilitat requereix la construcció de teories consistents de Gravetat Modificada a Grans Distàncies (GMGD), que són una generalització dels models de gravetat massiva. L’interès fenomenològic per aquestes teories també va resorgir amb l’aparició dels primers exemples de models de GMGD, com ara el model de Dvali, Gabadadze i Porrati (DGP), que consisteix en un tipus de brana en una dimensió extra. Malauradament, però, aquest model no permet explicar de forma consistent l’EA de l’Univers. Un dels objectius d’aquest projecte ha estat establir la viabilitat interna i fenomenològica dels models de GMGD. Des del punt de vista fenomenològic, ens hem centrat en la questió més important a la pràctica: trobar signatures observacionals que permetin distingir els models de GMGD dels d’EF. A nivell més teòric, també hem investigat el significat de les inestabilitats del model DGP.L’altre gran objectiu que ens vam proposar va ser la construcció de noves teories de GMGD. En la segona part d’aquest projecte, hem elaborat i mostrat la consistència del model “DGP en Cascada”, que generalitza el model DGP a més dimensions extra, i representa el segon model consistent i invariant-Lorentz a l’espai pla conegut. L’existència d’altres models de GMGD més enllà de DGP és de gran interès atès que podria permetre obtenir l’EA de l’Univers de forma purament geomètrica.
Resumo:
We describe an explicit relationship between strand diagrams and piecewise-linear functions for elements of Thompson’s group F. Using this correspondence, we investigate the dynamics of elements of F, and we show that conjugacy of one-bump functions can be described by a Mather-type invariant.
Resumo:
The McMillan map is a one-parameter family of integrable symplectic maps of the plane, for which the origin is a hyperbolic fixed point with a homoclinic loop, with small Lyapunov exponent when the parameter is small. We consider a perturbation of the McMillan map for which we show that the loop breaks in two invariant curves which are exponentially close one to the other and which intersect transversely along two primary homoclinic orbits. We compute the asymptotic expansion of several quantities related to the splitting, namely the Lazutkin invariant and the area of the lobe between two consecutive primary homoclinic points. Complex matching techniques are in the core of this work. The coefficients involved in the expansion have a resurgent origin, as shown in [MSS08].