88 resultados para Euler number, Irreducible symplectic manifold, Lagrangian fibration, Moduli space
Resumo:
In multiuser detection, the set of users active at any time may be unknown to the receiver. In these conditions, optimum reception consists of detecting simultaneously the set of activeusers and their data, problem that can be solved exactly by applying random-set theory (RST) and Bayesian recursions (BR). However, implementation of optimum receivers may be limited by their complexity, which grows exponentially with the number of potential users. In this paper we examine three strategies leading to reduced-complexity receivers.In particular, we show how a simple approximation of BRs enables the use of Sphere Detection (SD) algorithm, whichexhibits satisfactory performance with limited complexity.
Resumo:
We examine a multiple-access communication system in which multiuser detection is performed without knowledge of the number of active interferers. Using a statistical-physics approach, we compute the single-user channel capacity and spectral efficiency in the large-system limit.
Resumo:
Theorem 1 of Euler s paper of 1737 'Variae Observationes Circa Series Infinitas', states the astonishing result that the series of all unit fractions whose denominators are perfect powers of integers minus unity has sum one. Euler attributes the Theorem to Goldbach. The proof is one of those examples of misuse of divergent series to obtain correct results so frequent during the seventeenth and eighteenth centuries. We examine this proof closelyand, with the help of some insight provided by a modern (and completely dierent) proof of the Goldbach-Euler Theorem, we present a rational reconstruction in terms which could be considered rigorous by modern Weierstrassian standards. At the same time, with a few ideas borrowed from nonstandard analysis we see how the same reconstruction can be also be considered rigorous by modern Robinsonian standards. This last approach, though, is completely in tune with Goldbach and Euler s proof. We hope to convince the reader then how, a few simple ideas from nonstandard analysis, vindicate Euler's work.
Resumo:
Minkowski's ?(x) function can be seen as the confrontation of two number systems: regular continued fractions and the alternated dyadic system. This way of looking at it permits us to prove that its derivative, as it also happens for many other non-decreasing singular functions from [0,1] to [0,1], when it exists can only attain two values: zero and infinity. It is also proved that if the average of the partial quotients in the continued fraction expansion of x is greater than k* =5.31972, and ?'(x) exists then ?'(x)=0. In the same way, if the same average is less than k**=2 log2(F), where F is the golden ratio, then ?'(x)=infinity. Finally some results are presented concerning metric properties of continued fraction and alternated dyadic expansions.
Resumo:
Whereas people are typically thought to be better off with more choices, studiesshow that they often prefer to choose from small as opposed to large sets of alternatives.We propose that satisfaction from choice is an inverted U-shaped function of thenumber of alternatives. This proposition is derived theoretically by considering thebenefits and costs of different numbers of alternatives and is supported by fourexperimental studies. We also manipulate the perceptual costs of information processingand demonstrate how this affects the resulting satisfaction function. We furtherindicate that satisfaction when choosing from a given set is diminished if people aremade aware of the existence of other choice sets. The role of individual differences insatisfaction from choice is documented by noting effects due to gender and culture. Weconclude by emphasizing the need to have an explicit rationale for knowing how muchchoice is enough.
Resumo:
This paper studies the rate of convergence of an appropriatediscretization scheme of the solution of the Mc Kean-Vlasovequation introduced by Bossy and Talay. More specifically,we consider approximations of the distribution and of thedensity of the solution of the stochastic differentialequation associated to the Mc Kean - Vlasov equation. Thescheme adopted here is a mixed one: Euler/weakly interactingparticle system. If $n$ is the number of weakly interactingparticles and $h$ is the uniform step in the timediscretization, we prove that the rate of convergence of thedistribution functions of the approximating sequence in the $L^1(\Omega\times \Bbb R)$ norm and in the sup norm is of theorder of $\frac 1{\sqrt n} + h $, while for the densities is ofthe order $ h +\frac 1 {\sqrt {nh}}$. This result is obtainedby carefully employing techniques of Malliavin Calculus.
Resumo:
The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.
Resumo:
We consider the two Higgs doublet model extension of the standard model in the limit where all physical scalar particles are very heavy, too heavy, in fact, to be experimentally produced in forthcoming experiments. The symmetry-breaking sector can thus be described by an effective chiral Lagrangian. We obtain the values of the coefficients of the O(p4) operators relevant to the oblique corrections and investigate to what extent some nondecoupling effects may remain at low energies. A comparison with recent CERN LEP data shows that this model is indistinguishable from the standard model with one doublet and with a heavy Higgs boson, unless the scalar mass splittings are large.