51 resultados para Electromagnetic-fields
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
Adaptació de l'algorisme de Kumar per resoldre sistemes d'equacions amb matrius de Toeplitz sobre els reals a cossos finits en un temps 0 (n log n).
Resumo:
This paper is devoted to the study of the volcanoes of l-isogenies of elliptic curves over a finite field, focusing on their height as well as on the location of curves across its different levels. The core of the paper lies on the relationship between the l-Sylow subgroup of an elliptic curve and the level of the volcano where it is placed. The particular case l = 3 is studied in detail, giving an algorithm to determine the volcano of 3-isogenies of a given elliptic curve. Experimental results are also provided.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.
Resumo:
The microquasar LS 5039 has recently been detected as a source of very high energy (VHE) $\gamma$-rays. This detection, that confirms the previously proposed association of LS 5039 with the EGRET source 3EG~J1824$-$1514, makes of LS 5039 a special system with observational data covering nearly all the electromagnetic spectrum. In order to reproduce the observed spectrum of LS 5039, from radio to VHE $\gamma$-rays, we have applied a cold matter dominated jet model that takes into account accretion variability, the jet magnetic field, particle acceleration, adiabatic and radiative losses, microscopic energy conservation in the jet, and pair creation and absorption due to the external photon fields, as well as the emission from the first generation of secondaries. The radiative processes taken into account are synchrotron, relativistic Bremsstrahlung and inverse Compton (IC). The model is based on a scenario that has been characterized with recent observational results, concerning the orbital parameters, the orbital variability at X-rays and the nature of the compact object. The computed spectral energy distribution (SED) shows a good agreement with the available observational data.
Resumo:
A comparison is established between the contributions of transverse and longitudinal components of both the propagating and the evanescent waves associated to freely propagating radially polarized nonparaxial beams. Attention is focused on those fields that remain radially polarized upon propagation. In terms of the plane-wave angular spectrum of these fields, analytical expressions are given for determining both the spatial shape of the above components and their relative weight integrated over the whole transverse plane. The results are applied to two kinds of doughnut-like beams with radial polarization, and we compare the behavior of such fields at two transverse planes.