204 resultados para Classical super-integrable field theory
Resumo:
The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of a family of no-boundary solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term. Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturbations and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in this background.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We present an alternative approach to the usual treatments of singular Lagrangians. It is based on a Hamiltonian regularization scheme inspired on the coisotropic embedding of presymplectic systems. A Lagrangian regularization of a singular Lagrangian is a regular Lagrangian defined on an extended velocity phase space that reproduces the original theory when restricted to the initial configuration space. A Lagrangian regularization does not always exists, but a family of singular Lagrangians is studied for which such a regularization can be described explicitly. These regularizations turn out to be essentially unique and provide an alternative setting to quantize the corresponding physical systems. These ideas can be applied both in classical mechanics and field theories. Several examples are discussed in detail. 1995 American Institute of Physics.
Resumo:
We compute the exact vacuum expectation value of 1/2 BPS circular Wilson loops of TeX = 4 U(N) super Yang-Mills in arbitrary irreducible representations. By localization arguments, the computation reduces to evaluating certain integrals in a Gaussian matrix model, which we do using the method of orthogonal polynomials. Our results are particularly simple for Wilson loops in antisymmetric representations; in this case, we observe that the final answers admit an expansion where the coefficients are positive integers, and can be written in terms of sums over skew Young diagrams. As an application of our results, we use them to discuss the exact Bremsstrahlung functions associated to the corresponding heavy probes.
Resumo:
We report on the study of nonequilibrium ordering in the reaction-diffusion lattice gas. It is a kinetic model that relaxes towards steady states under the simultaneous competition of a thermally activated creation-annihilation $(reaction$) process at temperature T, and a diffusion process driven by a heat bath at temperature T?T. The phase diagram as one varies T and T, the system dimension d, the relative priori probabilities for the two processes, and their dynamical rates is investigated. We compare mean-field theory, new Monte Carlo data, and known exact results for some limiting cases. In particular, no evidence of Landau critical behavior is found numerically when d=2 for Metropolis rates but Onsager critical points and a variety of first-order phase transitions.
Resumo:
The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme inter-actions and from relativistic mean field theory. VWK consist s of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total en energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g.208 Pb turns out to be only ∼ −6 MeV what is about a factor two or three off the generally accepted value. As an adhoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out.
Resumo:
We define the Jacobian of a Riemann surface with analytically parametrized boundary components. These Jacobians belong to a moduli space of "open abelian varieties" which satisfies gluing axioms similar to those of Riemann surfaces, and therefore allows a notion of "conformal field theory" to be defined on this space. We further prove that chiral conformal field theories corresponding to even lattices factor through this moduli space of open abelian varieties.
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defined by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
This article is an informal introduction to some classical results of the theory of operator algebras. It aims to illustrate the richness and diversity of possible applications of this topic.
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
The process of free reserves in a non-life insurance portfolio as defined in the classical model of risk theory is modified by the introduction of dividend policies that set maximum levels for the accumulation of reserves. The first part of the work formulates the quantification of the dividend payments via the expectation of their current value under diferent hypotheses. The second part presents a solution based on a system of linear equations for discrete dividend payments in the case of a constant dividend barrier, illustrated by solving a specific case.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term