45 resultados para nonlinear phase matching
Resumo:
To describe the collective behavior of large ensembles of neurons in neuronal network, a kinetic theory description was developed in [13, 12], where a macroscopic representation of the network dynamics was directly derived from the microscopic dynamics of individual neurons, which are modeled by conductance-based, linear, integrate-and-fire point neurons. A diffusion approximation then led to a nonlinear Fokker-Planck equation for the probability density function of neuronal membrane potentials and synaptic conductances. In this work, we propose a deterministic numerical scheme for a Fokker-Planck model of an excitatory-only network. Our numerical solver allows us to obtain the time evolution of probability distribution functions, and thus, the evolution of all possible macroscopic quantities that are given by suitable moments of the probability density function. We show that this deterministic scheme is capable of capturing the bistability of stationary states observed in Monte Carlo simulations. Moreover, the transient behavior of the firing rates computed from the Fokker-Planck equation is analyzed in this bistable situation, where a bifurcation scenario, of asynchronous convergence towards stationary states, periodic synchronous solutions or damped oscillatory convergence towards stationary states, can be uncovered by increasing the strength of the excitatory coupling. Finally, the computation of moments of the probability distribution allows us to validate the applicability of a moment closure assumption used in [13] to further simplify the kinetic theory.
Resumo:
We study comparative statics of manipulations by women in the men-proposing deferred acceptance mechanism in the two-sided one-to-one marriage market. We prove that if a group of women employs truncation strategies or weakly successfully manipulates, then all other women weakly benefit and all men are weakly harmed. We show that our results do not appropriately generalize to the many-to-one college admissions model.
Resumo:
Nonlinear Noisy Leaky Integrate and Fire (NNLIF) models for neurons networks can be written as Fokker-Planck-Kolmogorov equations on the probability density of neurons, the main parameters in the model being the connectivity of the network and the noise. We analyse several aspects of the NNLIF model: the number of steady states, a priori estimates, blow-up issues and convergence toward equilibrium in the linear case. In particular, for excitatory networks, blow-up always occurs for initial data concentrated close to the firing potential. These results show how critical is the balance between noise and excitatory/inhibitory interactions to the connectivity parameter.
Resumo:
In this paper a model is developed to describe the three dimensional contact melting process of a cuboid on a heated surface. The mathematical description involves two heat equations (one in the solid and one in the melt), the Navier-Stokes equations for the flow in the melt, a Stefan condition at the phase change interface and a force balance between the weight of the solid and the countering pressure in the melt. In the solid an optimised heat balance integral method is used to approximate the temperature. In the liquid the small aspect ratio allows the Navier-Stokes and heat equations to be simplified considerably so that the liquid pressure may be determined using an igenfunction expansion and finally the problem is reduced to solving three first order ordinary differential equations. Results are presented showing the evolution of the melting process. Further reductions to the system are made to provide simple guidelines concerning the process. Comparison of the solutions with experimental data on the melting of n-octadecane shows excellent agreement.
Resumo:
The objective of this study was to evaluate the effect of vaccination against GnRH on performance traits, pig behaviour and acute phase proteins. A total of 120 pigs (36 non-castrated males, NCM; 36 males to be vaccinated, IM; 24 castratedmales, CM; and 24 females, FE)were controlled in groups of 12 in pens with feeding stations allowing the recording of individual feed intake. The two vaccinations (Improvac®) were applied at a mean age of 77 and 146 days. All pigswere individually weighed every 3 weeks from the mean ages of 74 to 176 days and backfat thickness (BT) and loinmuscle depth (LD) were also recorded ultrasonically. Twelve group-housed pigs for each treatment were video recorded during 2 consecutive days at weeks 9, 11, 20, 21, 23 and 25 of age to score the number of inactive or active pigs in each treatment group by scan sampling. Aggressive behaviour by the feeder and away from the feeder, and mounting behaviour was also scored by focal sampling. Blood samples from 12 NCM, 12 CM and 12 IM were taken to determine the concentration of circulating acute phase protein Pig-MAP atweeks 1, 2, 4, 11, 13, 21 and 25 of age. After slaughter, the number of skin lesions on the left half carcasswas scored. IMpresented overall a higher growth rate and daily feed intake compared to NCM (Pb0.05),whereas their feed conversion ratios did not differ significantly. In comparison with CM, IM presented a better feed conversion ratio (Pb0.05), since their overall dailyweight gaindid not differ significantly, butIM ate less. Final leanmeat percentage of IM and CM was lower compared to that of NCM (Pb0.05). Activity, mounting and aggressive behaviour of NCM was higher than in IM, CM and FE after the second vaccination. Pig-MAP concentrationswere significantly elevated just after surgical castrationand after bothadministrations of the vaccine (Pb0.05), but concentrations subsequently decreased throughout time. Skin lesions of NCM were significantly higher compared to that of IM and FE (Pb0.05). The effects of vaccination were especially remarkable after the second dose, when the higher feed intake and lower activity of IM compared to NCMmight result in higher final body weight and more fat. Results from this study indicate that some welfare aspects such as a reduced aggression and mounting behaviour may be improved by vaccination against GnRH, together with productive benefits like adequate feed conversion ratio and daily weight gain.
Resumo:
Given the urgence of a new paradigm in wireless digital trasmission which should allow for higher bit rate, lower latency and tigher delay constaints, it has been proposed to investigate the fundamental building blocks that at the circuital/device level, will boost the change towards a more efficient network architecture, with high capacity, higher bandwidth and a more satisfactory end user experience. At the core of each transciever, there are inherently analog devices capable of providing the carrier signal, the oscillators. It is strongly believed that many limitations in today's communication protocols, could be relieved by permitting high carrier frequency radio transmission, and having some degree of reconfigurability. This led us to studying distributed oscillator architectures which work in the microwave range and possess wideband tuning capability. As microvave oscillators are essentially nonlinear devices, a full nonlinear analyis, synthesis, and optimization had to be considered for their implementation. Consequently, all the most used nonlinear numerical techniques in commercial EDA software had been reviewed. An application of all the aforementioned techniques has been shown, considering a systems of three coupled oscillator ("triple push" oscillator) in which the stability of the various oscillating modes has been studied. Provided that a certain phase distribution is maintained among the oscillating elements, this topology permits a rise in the output power of the third harmonic; nevertheless due to circuit simmetry, "unwanted" oscillating modes coexist with the intenteded one. Starting with the necessary background on distributed amplification and distributed oscillator theory, the design of a four stage reverse mode distributed voltage controlled oscillator (DVCO) using lumped elments has been presented. All the design steps have been reported and for the first time a method for an optimized design with reduced variations in the output power has been presented. Ongoing work is devoted to model a wideband DVCO and to implement a frequency divider.
Resumo:
A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.
Resumo:
In this paper we study the existence and qualitative properties of travelling waves associated to a nonlinear flux limited partial differential equation coupled to a Fisher-Kolmogorov-Petrovskii-Piskunov type reaction term. We prove the existence and uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy travelling wave solutions.
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
L'objectiu del TFC consisteix en desenvolupar una aplicació que permeti, per una banda, la definició d'una oferta de recursos; per altra banda el uns usuaris-consumidors puguéssin apuntar-se a dites ofertes i, finalment,
Resumo:
This paper proposes MSISpIC, a probabilistic sonar scan matching algorithm for the localization of an autonomous underwater vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), the robot displacement estimated through dead-reckoning using a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method is an extension of the pIC algorithm. An extended Kalman filter (EKF) is used to estimate the robot-path during the scan in order to reference all the range and bearing measurements as well as their uncertainty to a scan fixed frame before registering. The major contribution consists of experimentally proving that probabilistic sonar scan matching techniques have the potential to improve the DVL-based navigation. The algorithm has been tested on an AUV guided along a 600 m path within an abandoned marina underwater environment with satisfactory results
Resumo:
This paper focus on the problem of locating single-phase faults in mixed distribution electric systems, with overhead lines and underground cables, using voltage and current measurements at the sending-end and sequence model of the network. Since calculating series impedance for underground cables is not as simple as in the case of overhead lines, the paper proposes a methodology to obtain an estimation of zero-sequence impedance of underground cables starting from previous single-faults occurred in the system, in which an electric arc occurred at the fault location. For this reason, the signal is previously pretreated to eliminate its peaks voltage and the analysis can be done working with a signal as close as a sinus wave as possible
Resumo:
The problem of stability analysis for a class of neutral systems with mixed time-varying neutral, discrete and distributed delays and nonlinear parameter perturbations is addressed. By introducing a novel Lyapunov-Krasovskii functional and combining the descriptor model transformation, the Leibniz-Newton formula, some free-weighting matrices, and a suitable change of variables, new sufficient conditions are established for the stability of the considered system, which are neutral-delay-dependent, discrete-delay-range dependent, and distributeddelay-dependent. The conditions are presented in terms of linear matrix inequalities (LMIs) and can be efficiently solved using convex programming techniques. Two numerical examples are given to illustrate the efficiency of the proposed method
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
In this paper a one-phase supercooled Stefan problem, with a nonlinear relation between the phase change temperature and front velocity, is analysed. The model with the standard linear approximation, valid for small supercooling, is first examined asymptotically. The nonlinear case is more difficult to analyse and only two simple asymptotic results are found. Then, we apply an accurate heat balance integral method to make further progress. Finally, we compare the results found against numerical solutions. The results show that for large supercooling the linear model may be highly inaccurate and even qualitatively incorrect. Similarly as the Stefan number β → 1&sup&+&/sup& the classic Neumann solution which exists down to β =1 is far from the linear and nonlinear supercooled solutions and can significantly overpredict the solidification rate.