54 resultados para heat kernel,worldline model,perturbative quantum gravity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of a proposed model of N point particles in direct interaction are considered in the limit of small velocities. It is shown that, in this limit, time correlations cancel out and that Newtonian dynamics is recovered for the system in a natural way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The definition of the quark-antiquark static potential is given within an effective field theory framework. The leading infrared divergences of the static singlet potential in perturbation theory are explicitly calculated.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gross-Neveu model in an S^1 space is analyzed by means of a variational technique: the Gaussian effective potential. By making the proper connection with previous exact results at finite temperature, we show that this technique is able to describe the phase transition occurring in this model. We also make some remarks about the appropriate treatment of Grassmann variables in variational approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following a model based on the SU(8) symmetry that treats heavy pseudoscalars and heavy vector mesons on an equal footing, as required by heavy quark symmetry, we study the interaction of baryons and mesons in coupled channels within an unitary approach that generates dynamically poles in the scattering T-matrix. We concentrate in the exotic channels with negative charm quantum number for which there is the experimental claim of one state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A very simple model of a classical particle in a heat bath under the influence of external noise is studied. By means of a suitable hypothesis, the heat bath is reduced to an internal colored noise (OrnsteinUhlenbeck noise). In a second step, an external noise is coupled to the bath. The steady state probability distributions are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of a proposed model of N point particles in direct interaction are considered in the limit of small velocities. It is shown that, in this limit, time correlations cancel out and that Newtonian dynamics is recovered for the system in a natural way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If there are large extra dimensions and the fundamental Planck scale is at the TeV scale, then the question arises of whether ultrahigh energy cosmic rays might probe them. We study the neutrino-nucleon cross section in these models. The elastic forward scattering is analyzed in some detail, hoping to clarify earlier discussions. We also estimate the black hole production rate. We study energy loss from graviton mediated interactions and conclude that they cannot explain the cosmic ray events above the GZK energy limit. However, these interactions could start horizontal air showers with characteristic profile and at a rate higher than in the standard model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite cluster models and a variety of ab initio wave functions have been used to study the electronic structure of bulk KNiF3. Several electronic states, including the ground state and some charge-transfer excited states, have been considered. The study of the cluster-model wave functions has permitted an understanding of the nature of the chemical bond in the electronic ground state. This is found to be highly ionic and the different ionic and covalent contributions to the bonding have been identified and quantified. Finally, we have studied the charge-transfer excited states leading to the optical gap and have found that calculated and experimental values are in good agreement. The wave functions corresponding to these excited states have also been analyzed and show that although KNiF3 may be described as a ligand-to-metal charge-transfer insulator there is a strong configuration mixing with the metal-to-metal charge-transfer states.