83 resultados para Weakly Hyperbolic Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefinite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld’s nonarchimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet’s bimodules and the specialization of Heegner points, as introduced in [21]. As an application, we provide a list of equations of Shimura curves and quotients of them obtained by our algorithm that had been conjectured by Kurihara.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present two new stabilized high-resolution numerical methods for the convection–diffusion–reaction (CDR) and the Helmholtz equations respectively. The work embarks upon a priori analysis of some consistency recovery procedures for some stabilization methods belonging to the Petrov–Galerkin framework. It was found that the use of some standard practices (e.g. M-Matrices theory) for the design of essentially non-oscillatory numerical methods is not feasible when consistency recovery methods are employed. Hence, with respect to convective stabilization, such recovery methods are not preferred. Next, we present the design of a high-resolution Petrov–Galerkin (HRPG) method for the 1D CDR problem. The problem is studied from a fresh point of view, including practical implications on the formulation of the maximum principle, M-Matrices theory, monotonicity and total variation diminishing (TVD) finite volume schemes. The current method is next in line to earlier methods that may be viewed as an upwinding plus a discontinuity-capturing operator. Finally, some remarks are made on the extension of the HRPG method to multidimensions. Next, we present a new numerical scheme for the Helmholtz equation resulting in quasi-exact solutions. The focus is on the approximation of the solution to the Helmholtz equation in the interior of the domain using compact stencils. Piecewise linear/bilinear polynomial interpolation are considered on a structured mesh/grid. The only a priori requirement is to provide a mesh/grid resolution of at least eight elements per wavelength. No stabilization parameters are involved in the definition of the scheme. The scheme consists of taking the average of the equation stencils obtained by the standard Galerkin finite element method and the classical finite difference method. Dispersion analysis in 1D and 2D illustrate the quasi-exact properties of this scheme. Finally, some remarks are made on the extension of the scheme to unstructured meshes by designing a method within the Petrov–Galerkin framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed preconditioners and include numerical examples that validate the theory and assess the performance of the preconditioners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of initial conditions on the speed of propagating fronts in reaction-diffusion equations is examined in the framework of the Hamilton-Jacobi theory. We study the transition between quenched and nonquenched fronts both analytically and numerically for parabolic and hyperbolic reaction diffusion. Nonhomogeneous media are also analyzed and the effect of algebraic initial conditions is also discussed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pseudo-spectral time-domain (PSTD) method is an alternative time-marching method to classicalleapfrog finite difference schemes in the simulation of wave-like propagating phenomena. It is basedon the fundamentals of the Fourier transform to compute the spatial derivatives of hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acoustics simulations. However, one of the first issues to be solved consists on modeling wallabsorption. Unfortunately, there are no references in the technical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals to overcome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pseudo-Spectral Time Domain (PSTD) method is an alternative time-marching method to classical leapfrog finite difference schemes inthe simulation of wave-like propagating phenomena. It is based on the fundamentals of the Fourier transform to compute the spatial derivativesof hyperbolic differential equations. Therefore, it results in an isotropic operator that can be implemented in an efficient way for room acousticssimulations. However, one of the first issues to be solved consists on modeling wall absorption. Unfortunately, there are no references in thetechnical literature concerning to that problem. In this paper, assuming real and constant locally reacting impedances, several proposals toovercome this problem are presented, validated and compared to analytical solutions in different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the realism of mechanisms that implementsocial choice functions in the traditional sense. Will agents actually playthe equilibrium assumed by the analysis? As an example, we study theconvergence and stability properties of Sj\"ostr\"om's (1994) mechanism, onthe assumption that boundedly rational players find their way to equilibriumusing monotonic learning dynamics and also with fictitious play. Thismechanism implements most social choice functions in economic environmentsusing as a solution concept the iterated elimination of weakly dominatedstrategies (only one round of deletion of weakly dominated strategies isneeded). There are, however, many sets of Nash equilibria whose payoffs maybe very different from those desired by the social choice function. Withmonotonic dynamics we show that many equilibria in all the sets ofequilibria we describe are the limit points of trajectories that havecompletely mixed initial conditions. The initial conditions that lead tothese equilibria need not be very close to the limiting point. Furthermore,even if the dynamics converge to the ``right'' set of equilibria, it stillcan converge to quite a poor outcome in welfare terms. With fictitious play,if the agents have completely mixed prior beliefs, beliefs and play convergeto the outcome the planner wants to implement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrodynamical equations act as a link between the local observed magnitudes of galactic motion and the general ones accounting for the behaviour of the Galaxy as a whole. Constraints are set usually in order to use them even in the lower order hierarchy. The authors present in this paper the complete expressions up to their fourth order. These equations will be used in the next future in their general form taking into account both the expected increase of kinematic data that the astrometric mission Hipparcos will provide, and some recent results indicating the possibility to obtain estimates for the momenta gradients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In dealing with systems as complex as the cytoskeleton, we need organizing principles or, short of that, an empirical framework into which these systems fit. We report here unexpected invariants of cytoskeletal behavior that comprise such an empirical framework. We measured elastic and frictional moduli of a variety of cell types over a wide range of time scales and using a variety of biological interventions. In all instances elastic stresses dominated at frequencies below 300 Hz, increased only weakly with frequency, and followed a power law; no characteristic time scale was evident. Frictional stresses paralleled the elastic behavior at frequencies below 10 Hz but approached a Newtonian viscous behavior at higher frequencies. Surprisingly, all data could be collapsed onto master curves, the existence of which implies that elastic and frictional stresses share a common underlying mechanism. Taken together, these findings define an unanticipated integrative framework for studying protein interactions within the complex microenvironment of the cell body, and appear to set limits on what can be predicted about integrated mechanical behavior of the matrix based solely on cytoskeletal constituents considered in isolation. Moreover, these observations are consistent with the hypothesis that the cytoskeleton of the living cell behaves as a soft glassy material, wherein cytoskeletal proteins modulate cell mechanical properties mainly by changing an effective temperature of the cytoskeletal matrix. If so, then the effective temperature becomes an easily quantified determinant of the ability of the cytoskeleton to deform, flow, and reorganize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A global existence and uniqueness result of the solution for multidimensional, time dependent, stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H> is proved. It is shown, also, that the solution has finite moments. The result is based on a deterministic existence and uniqueness theorem whose proof uses a contraction principle and a priori estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ginzburg-Landau equations with multiplicative noise are considered, to study the effects of fluctuations in domain growth. The equations are derived from a coarse-grained methodology and expressions for the resulting concentration-dependent diffusion coefficients are proposed. The multiplicative noise gives contributions to the Cahn-Hilliard linear-stability analysis. In particular, it introduces a delay in the domain-growth dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider stochastic partial differential equations with multiplicative noise. We derive an algorithm for the computer simulation of these equations. The algorithm is applied to study domain growth of a model with a conserved order parameter. The numerical results corroborate previous analytical predictions obtained by linear analysis.